生活随笔
收集整理的這篇文章主要介紹了
OpenCV中使用神经网络 CvANN_MLP
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
原文:http://blog.csdn.net/xiaowei_cqu/article/details/9027617
OpenCV的ml模塊實(shí)現(xiàn)了人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANN)最典型的多層感知器(multi-layer
perceptrons, MLP)模型。由于ml模型實(shí)現(xiàn)的算法都繼承自統(tǒng)一的CvStatModel基類(lèi),其訓(xùn)練和預(yù)測(cè)的接口都是train(),predict(),非常簡(jiǎn)單。
下面來(lái)看神經(jīng)網(wǎng)絡(luò)?CvANN_MLP?的使用~
定義神經(jīng)網(wǎng)絡(luò)及參數(shù):
[cpp]?view
plaincopy
?? ????CvANN_MLP?bp;??? ?????? ????CvANN_MLP_TrainParams?params;?? ????params.train_method=CvANN_MLP_TrainParams::BACKPROP;?? ????params.bp_dw_scale=0.1;?? ????params.bp_moment_scale=0.1;?? ?????? ?????? ?????? ?????? ?????? ??????
可以直接定義CvANN_MLP神經(jīng)網(wǎng)絡(luò),并設(shè)置其參數(shù)。?BACKPROP表示使用back-propagation的訓(xùn)練方法,RPROP即最簡(jiǎn)單的propagation訓(xùn)練方法。
使用BACKPROP有兩個(gè)相關(guān)參數(shù):bp_dw_scale即bp_moment_scale:
使用PRPOP有四個(gè)相關(guān)參數(shù):rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max:
上述代碼中為其默認(rèn)值。
設(shè)置網(wǎng)絡(luò)層數(shù),訓(xùn)練數(shù)據(jù):
[cpp]?view
plaincopy
?? ????float?labels[3][5]?=?{{0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}};?? ????Mat?labelsMat(3,?5,?CV_32FC1,?labels);?? ?? ????float?trainingData[3][5]?=?{?{1,2,3,4,5},{111,112,113,114,115},?{21,22,23,24,25}?};?? ????Mat?trainingDataMat(3,?5,?CV_32FC1,?trainingData);?? ????Mat?layerSizes=(Mat_<int>(1,5)?<<?5,2,2,2,5);?? ????bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);?? ????????????????????????????????????????????????? ????????????????????????????????????????????????? ????bp.train(trainingDataMat,?labelsMat,?Mat(),Mat(),?params);??
layerSizes設(shè)置了有三個(gè)隱含層的網(wǎng)絡(luò)結(jié)構(gòu):輸入層,三個(gè)隱含層,輸出層。輸入層和輸出層節(jié)點(diǎn)數(shù)均為5,中間隱含層每層有兩個(gè)節(jié)點(diǎn)。
create第二個(gè)參數(shù)可以設(shè)置每個(gè)神經(jīng)節(jié)點(diǎn)的激活函數(shù),默認(rèn)為CvANN_MLP::SIGMOID_SYM,即Sigmoid函數(shù),同時(shí)提供的其他激活函數(shù)有Gauss和階躍函數(shù)。
使用訓(xùn)練好的網(wǎng)絡(luò)結(jié)構(gòu)分類(lèi)新的數(shù)據(jù):
然后直接使用predict函數(shù),就可以預(yù)測(cè)新的節(jié)點(diǎn):
[cpp]?view
plaincopy
Mat?sampleMat?=?(Mat_<float>(1,5)?<<?i,j,0,0,0);?? ????????????Mat?responseMat;?? ????????????bp.predict(sampleMat,responseMat);??
完整程序代碼:
[cpp]?view
plaincopy
?? ?? #include?<opencv2/core/core.hpp>?? #include?<opencv2/highgui/highgui.hpp>?? #include?<opencv2/ml/ml.hpp>?? #include?<iostream>?? #include?<string>?? ?? using?namespace?std;?? using?namespace?cv;?? ?? int?main()?? {?? ?????? ????CvANN_MLP?bp;??? ?????? ????CvANN_MLP_TrainParams?params;?? ????params.train_method=CvANN_MLP_TrainParams::BACKPROP;?? ????params.bp_dw_scale=0.1;?? ????params.bp_moment_scale=0.1;?? ?????? ?????? ?????? ?????? ?????? ?????? ?? ?????? ????float?labels[3][5]?=?{{0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}};?? ????Mat?labelsMat(3,?5,?CV_32FC1,?labels);?? ?? ????float?trainingData[3][5]?=?{?{1,2,3,4,5},{111,112,113,114,115},?{21,22,23,24,25}?};?? ????Mat?trainingDataMat(3,?5,?CV_32FC1,?trainingData);?? ????Mat?layerSizes=(Mat_<int>(1,5)?<<?5,2,2,2,5);?? ????bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);?? ????????????????????????????????????????????????? ????????????????????????????????????????????????? ????bp.train(trainingDataMat,?labelsMat,?Mat(),Mat(),?params);?? ?? ?? ?????? ????int?width?=?512,?height?=?512;?? ????Mat?image?=?Mat::zeros(height,?width,?CV_8UC3);?? ????Vec3b?green(0,255,0),?blue?(255,0,0);?? ?????? ????for?(int?i?=?0;?i?<?image.rows;?++i)?? ????????for?(int?j?=?0;?j?<?image.cols;?++j)?? ????????{?? ????????????Mat?sampleMat?=?(Mat_<float>(1,5)?<<?i,j,0,0,0);?? ????????????Mat?responseMat;?? ????????????bp.predict(sampleMat,responseMat);?? ????????????float*?p=responseMat.ptr<float>(0);?? ????????????int?response=0;?? ????????????for(int?i=0;i<5;i++){?? ?????????????? ????????????????response+=p[i];?? ????????????}?? ????????????if?(response?>2)?? ????????????????image.at<Vec3b>(j,?i)??=?green;?? ????????????else???? ????????????????image.at<Vec3b>(j,?i)??=?blue;?? ????????}?? ?? ?????????? ????????int?thickness?=?-1;?? ????????int?lineType?=?8;?? ????????circle(?image,?Point(501,??10),?5,?Scalar(??0,???0,???0),?thickness,?lineType);?? ????????circle(?image,?Point(255,??10),?5,?Scalar(255,?255,?255),?thickness,?lineType);?? ????????circle(?image,?Point(501,?255),?5,?Scalar(255,?255,?255),?thickness,?lineType);?? ????????circle(?image,?Point(?10,?501),?5,?Scalar(255,?255,?255),?thickness,?lineType);?? ?? ????????imwrite("result.png",?image);?????????? ?? ????????imshow("BP?Simple?Example",?image);??? ????????waitKey(0);?? ?? }??
結(jié)果:
總結(jié)
以上是生活随笔為你收集整理的OpenCV中使用神经网络 CvANN_MLP的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。