日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ML_Random_Forests

發(fā)布時(shí)間:2025/4/16 编程问答 21 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ML_Random_Forests 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

機(jī)器學(xué)習(xí)100天系列學(xué)習(xí)筆記 機(jī)器學(xué)習(xí)100天(中文翻譯版)機(jī)器學(xué)習(xí)100天(英文原版)
代碼閱讀:

第一步:導(dǎo)包

#Step 1: Importing the Libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd

第二步:導(dǎo)入數(shù)據(jù)

#Step 2: Importing the dataset dataset = pd.read_csv('D:/daily/機(jī)器學(xué)習(xí)100天/100-Days-Of-ML-Code-中文版本/100-Days-Of-ML-Code-master/datasets/Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values

第三步:劃分訓(xùn)練集、測(cè)試集

#Step 3: Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

第四步:特征縮放

#Step 4: Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)

經(jīng)過特征縮放后的X_train:

[[ 0.58164944 -0.88670699][-0.60673761 1.46173768][-0.01254409 -0.5677824 ][-0.60673761 1.89663484][ 1.37390747 -1.40858358][ 1.47293972 0.99784738][ 0.08648817 -0.79972756][-0.01254409 -0.24885782][-0.21060859 -0.5677824 ]...]

對(duì)于進(jìn)行特征縮放這一步,個(gè)人認(rèn)為是非常重要的,它可以加快收斂速度,在深度學(xué)習(xí)中間尤為重要(梯度爆炸問題)。

第五步:RandomForestClassifier

#Step 5: Fitting Random Forest to the Training set from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0) classifier.fit(X_train, y_train)

第六步:預(yù)測(cè)

#Step 6: Predicting the Test set results y_pred = classifier.predict(X_test)

第七步:混淆矩陣

#Step 7: Making the Confusion Matrix from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report cm = confusion_matrix(y_test, y_pred) print(cm) # print confusion_matrix print(classification_report(y_test, y_pred)) # print classification report

混淆:簡(jiǎn)單理解為一個(gè)class被預(yù)測(cè)成另一個(gè)class。
給一個(gè)參考鏈接 混淆矩陣
然后談?wù)刢lassification_report函數(shù);科學(xué)上網(wǎng),正常上網(wǎng)

輸出:

[[63 5][ 4 28]]precision recall f1-score support0 0.94 0.93 0.93 681 0.85 0.88 0.86 32accuracy 0.91 100macro avg 0.89 0.90 0.90 100 weighted avg 0.91 0.91 0.91 100

precision:精確度;
recall:召回率;
f1-score:precision、recall的調(diào)和函數(shù),越接近1越好;
support:每個(gè)標(biāo)簽的出現(xiàn)次數(shù);
avg / total行為各列的均值(support列為總和);

第八步:可視化

#Step 8: Visualization from matplotlib.colors import ListedColormap X_set,y_set = X_train,y_train X1,X2 = np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:,0].max()+1, step=0.01),np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(),X1.max()) plt.ylim(X2.min(),X2.max())for i,j in enumerate(np.unique(y_set)):plt.scatter(X_set[y_set==j,0],X_set[y_set==j,1],c = ListedColormap(('red', 'green'))(i), label=j) plt. title(' Random Forest Classification (Training set)') plt. xlabel(' Age') plt. ylabel(' Estimated Salary') plt. legend() plt. show()X_set,y_set=X_test,y_test X1,X2=np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01),np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01))plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(),X1.max()) plt.ylim(X2.min(),X2.max()) for i,j in enumerate(np. unique(y_set)):plt.scatter(X_set[y_set==j,0],X_set[y_set==j,1],c = ListedColormap(('red', 'green'))(i), label=j)plt. title(' Random Forest Classification (Test set)') plt. xlabel(' Age') plt. ylabel(' Estimated Salary') plt. legend() plt. show()


全部代碼:

#Day8: Random_Forests (RF) 2022/04/11#Step 1: Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd#Step 2: Importing the dataset dataset = pd.read_csv('D:/daily/機(jī)器學(xué)習(xí)100/100-Days-Of-ML-Code-中文版本/100-Days-Of-ML-Code-master/datasets/Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values#Step 3: Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)#Step 4: Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)#Step 5: Fitting Random Forest to the Training set from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0) classifier.fit(X_train, y_train)#Step 6: Predicting the Test set results y_pred = classifier.predict(X_test)#Step 7: Making the Confusion Matrix from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report cm = confusion_matrix(y_test, y_pred) print(cm) print(classification_report(y_test, y_pred))#Step 8: Visualising the Training set results from matplotlib.colors import ListedColormap X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)):plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Random Forest Classification (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()# Visualising the Test set results from matplotlib.colors import ListedColormap X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)):plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Random Forest Classification (Test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()

總結(jié)

以上是生活随笔為你收集整理的ML_Random_Forests的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。