日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

从微积分到上同调

發布時間:2025/4/14 编程问答 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 从微积分到上同调 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

$\newcommand\Im{\operatorname{Im}}$

$\newcommand\Ker{\operatorname{Ker}}$

$\newcommand\grad{\operatorname{grad}}$

$\newcommand\div{\operatorname{div}}$

$\newcommand\rot{\operatorname{rot}}$

$\newcommand\R{\mathbb{R}}$

本文主要來自于?Ib H. Madsen,Jxrgen Tornehave《從微積分到上同調》

故事要從牛頓-萊布尼茲公式說起。

(微積分基本定理)若$f(x)$是定義在開區間$(a,b)$上的連續函數$\Rightarrow$存在$F$,使得$F'=f$.

這個定理是現代微積分的基石。但是由于這個定理只描述了一元函數的情況,人們自然想“是否能把它推廣到二元函數”?比如說,給定了一個函數$f=(f_1,f_2):U\to \mathbb{R}^2$,為定義在$\mathbb{R}^2$上開集$U$的光滑函數,那是否存在$F:U\to\mathbb{R}$,使得$\nabla F=f$?

也就是說,是否$\exists F$,使得\[\frac{\partial f_1}{\partial x_2}=\frac{\partial}{\partial x_2}\left(\frac{\partial F}{\partial x_1}\right)=\frac{\partial}{\partial x_1}\left(\frac{\partial F}{\partial x_2}\right)=\frac{\partial f_2}{\partial x_1}\]

(PS:這也給出了一個$F$存在的必要條件,也就是需要$\frac{\partial f_1}{\partial x_2}=\frac{\partial f_2}{\partial x_1}$)

但是滿足了必要條件卻不一定存在這樣的$F$,書中就給出了這樣一個經典的例子:

例子1 $U=\mathbb{R}^2\backslash \{0\},f:U\to\mathbb{R}^2, (x_1,x_2)\mapsto (\frac{-x_2}{x_1^2+x_2^2},\frac{x_1}{x_1^2+x_2^2})$

?我們認為,不存在$F:U\to\mathbb{R}^2$,使得$\frac{\partial F}{\partial x_1}=f_1,\frac{\partial ?F}{\partial ?x_2}=f_2$. 否則的話就有

\[\fracozvdkddzhkzd{d\theta}F(\cos{\theta},\sin{\theta})=\frac{\partial F}{\partial x_1}(\cos{\theta},\sin{\theta})(-\sin{\theta})+\frac{\partial F}{\partial x_2}(\cos{\theta},\sin{\theta})(\cos{\theta})=1\]

但是另外又有\[\int_{0}^{2\pi}\fracozvdkddzhkzd{d\theta}F(\cos{\theta},\sin{\theta})d\theta=F(\cos{\theta},\sin{\theta})|_{0}^{2\pi}=0\]

矛盾!

?例子2 $U=\{(x_1,x_2)\in\mathbb{R}^2|x_1^2+x_2^2<1\}$為開集,則$f:U\to\mathbb{R}^2,(x_1,x_2)\mapsto (x_1^2+x_2,x_1)$有“原函數” $F(x_1,x_2)=\frac{1}{3}x^3+x_1x_2$

為什么這個函數存在所謂的“原函數”呢?其實這和區域的性質有關,實際上,定義在這個單位圓盤上滿足必要條件的函數都有“原函數”。更推廣地我們可以刻畫這個區域,也即“星形區域”(Star-shaped).

定義 $U\in\mathbb{R}^2$為開集,$U$被稱為關于$x_0$的星形區域,如果對于$\forall x\in U$,線段$\overline{x_0 x}\subset U$.

?

如圖就是一個星形區域。而例1中的區域并非星形的,因為任意$x_0$,它關于原點的對稱點不能連線段在區域內。

?星形區域有什么好的性質呢?正如前面所說,在這個區域內,就有$\frac{\partial f_1}{\partial x_2}=\frac{\partial f_2}{\partial x_1}$與存在原函數$F$等價!具體定理敘述如下:

?定理1 $U\in\mathbb{R}^2$是開的星形區域,且$f:U\to\mathbb{R}^2$光滑(實際上只要可導似乎就行了),$f=(f_1,f_2)$.且$\frac{\partial f_1}{\partial x_2}=\frac{\partial f_2}{\partial x_1}$,那么$\exists F:U\to\mathbb{R}$ 光滑,且有$\frac{\partial F}{\partial x_1}=f_1,\frac{\partial F}{\partial x_2}=f_2$.

?

WLOG,我們可設$U$關于$x_0=0\in \mathbb{R}^2$是星形的。令

\[F(x_1,x_2)=\int_{0}^{1}(x_1 f_1(tx_1,tx_2)+x_2 f_2(tx_1,tx_2))dt\]

那么計算$\frac{\partial}{\partial x_1}F(x_1,x_2)$,可以得到

\[\begin{align*}\frac{\partial}{\partial x_1}F(x_1,x_2)&=\int_0^1 [f_1(tx_1,tx_2)+tx_1\frac{\partial f_1}{\partial x_1}(tx_1,tx_2)+tx_2\frac{\partial f_2}{\partial x_1}(tx_1,tx_2)]dt\\ &= \int_{0}^1\fracozvdkddzhkzd{dt}(tf(tx_1,tx_2))=f_1(x_1,x_2)\end{align*}\]

同理亦可得另一邊的等式。$\square$

為什么星形區域有兩者等價,而去掉一點的區域卻不行呢?我們再用場論的符號來敘述下以上的事實。

$U\in\mathbb{R}^2$,我們要研究的是$C^{\infty}(U,\mathbb{R}^k)=\{\mbox{smooth function on }U\}$,這個可看成一個線性空間。

我們定義符號$\grad:C^{\infty}(U,\mathbb{R})\to C^{\infty}(U,\mathbb{R}^2)$,使得$\grad(f)=(\frac{\partial f_1}{\partial x_1},\frac{\partial f_2}{\partial x_2})$

以及$\rot:C^{\infty}(U,\mathbb{R}^2)\to C^{\infty}(U,\mathbb{R})$,使得$\rot((f_1,f_2))=\frac{\partial f_1}{\partial x_2}-\frac{\partial f_2}{\partial x_1}$

則我們可以給出如下的鏈:

$$\require{AMScd}
\begin{CD}
C^{\infty}(U,\mathbb{R}) @>{\grad}>> C^{\infty}(U,\mathbb{R}^2) @>{\rot}>> C^{\infty}(U,\mathbb{R})
\end{CD}$$

有兩條性質

  • $\rot\circ\grad = 0$(由于導數可交換)
  • $\Im(\grad)\in\Ker(\rot)$(由1立刻得到)
  • 為了刻畫這兩者之間的包涵關系,我們定義

    $$H^1(U):=\frac{\Ker(\rot)}{\Im(\grad)}={\alpha+\Im(\grad)}$$

    這樣一個商群就是所謂的第一上同調群,代表元$[\alpha]=[\beta]\Leftrightarrow \alpha-\beta\in\Im(\grad)$,值得一提的是$H^1(U)$通常是有限維的。

    前面的定理1讓我們知道,對于開星形區域$U$,就有$\Ker(\rot)\in\Im(\grad)$,從而$H^1(U)$中只有$0$元(這也是定理1的重述)。而從例子1我們知道,對于$U=\mathbb{R}^2\backslash\{(0,0)\}$,$H^1(U)\not = 0$.

    同樣我們可以定義第0上同調群,也就是$H^0(U)=\Ker(\grad)$

    我們同樣可以計算某些區域的第0上同調群,定理如下:

    定理2 $U$為$\mathbb{R}^2$中連通開集,那么有$H^0(U)=\mathbb{R}$

    這個證明也很顯然,因為$f$總在一個局部為常數,而且集合連通,使$f$為常數的區域既開又閉,從而在整個區域上都為常數。

    ?

    考慮完二維的情況,我們同樣可以考慮三維的情況,這時候有這樣一個鏈

    $$\begin{CD}
    C^{\infty}(U,\mathbb{R}) @>{\grad}>> C^{\infty}(U,\mathbb{R}^3) @>{\rot}>> C^{\infty}(U,\mathbb{R}^3)@>{\div}>> C^{\infty}(U,\mathbb{R})
    \end{CD}$$

    這三個東西的定義經過計算同樣有 $\rot\circ\grad=0,\div\circ\rot=0$

    所以類似地我們定義幾個上同調群,即

    $$H^0(U)=\Ker(\grad),H^1(U)=\frac{\Ker(\rot)}{\Im(\grad)},H^2(U)=\frac{\Ker(\div)}{\Im(\rot)}$$

    (讀到這想必也發現了,同調與上同調無非就是兩個算子$\partial_1\circ\partial_2=0$定義出的群$\Ker(\partial_1)/\Im(\partial_2)$而已,沒什么高深的知識,不過在拓撲中卻非常有用)

    ?定理3 在$\mathbb{R}^3$中的開星形區域$U$,有$H^0(U)=\mathbb{R},H^1(U)=0,H^2(U)=0$

    前兩個同調用前面的方法即可,我們需要算的是$H^2(U)=0$,只需要對于$\forall F\in\Ker(\div)$,找到$G$使得$\rot(G)=F$。而顯然

    \[G(\vec{x})=\int_0^1(F(t\vec{x})\times(t\vec{x}))dt\]

    滿足條件。

    同樣我們也舉出例子,讓$H^1(U)\not = 0$.

    例3 $S=\{(x_1,x_2,x_3)\in\mathbb{R}^3,x_1^2+x_2^2=1,x_3=0\}$,而區域$U=\mathbb{R}^3\backslash S$,則令$$f(x_1,x_2,x_3)=\left(\frac{-x_1x_3}{x_3^2+(x_1^2+x_2^2-1)^2},\frac{-x_2x_3}{x_3^2+(x_1^2+x_2^2-1)^2},\frac{x_1^2+x_2^2-1}{x_3^2+(x_1^2+x_2^2-1)^2}\right)$$

    我們聲稱$\rot(f)=0$,即$[f]\in H^1(U)$但是$H^1(U)\not = 0$,否則若$\exists F\in C^{\infty}(U,\mathbb{R})$,使得$\grad{F}=f$

    那么考慮曲線$\gamma(t)=(\sqrt{1+\cos{t}},0,\sin{t}),-\pi\le t\le \pi$,則有$\fracozvdkddzhkzd{dt}F(\gamma(t))=1,\int_{-\pi}^{\pi}\fracozvdkddzhkzd{dt}F(\gamma(t))dt=0$.

    從上我們可以大致有這樣一點想法:如果$H^1(U)\not = 0$,那就有個$1$維的“洞”,那么是不是$H^2(U)\not =0$就表明有$2$為的洞了呢?這個博主還不是很明白,需要繼續學習,來補充這篇文章。

    轉載于:https://www.cnblogs.com/misaka01034/p/FromCalToCoH.html

    總結

    以上是生活随笔為你收集整理的从微积分到上同调的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 久久精品视频99 | 丰满岳乱妇在线观看中字无码 | 久久久久在线观看 | 欧美日韩在线免费观看 | 图片区亚洲色图 | jizz在线播放 | 日韩免费av | 日本三级吃奶头添泬 | 午夜成人鲁丝片午夜精品 | 污污网站在线播放 | 成人免费视频国产在线观看 | 久久综合国产 | 超91在线 | 天美麻花果冻视频大全英文版 | 成人激情综合 | 男男毛片 | 亚洲欧美第一页 | 91网站免费在线观看 | 秋霞网av | 日韩在线精品视频一区二区涩爱 | 九九在线视频 | jizz网站| 国产精品制服诱惑 | 欧美成人做爰猛烈床戏 | 成人免费看毛片 | 日本涩涩网站 | 天天想你免费观看完整版高清电影 | 国产精品无码白浆高潮 | 成人伊人网 | 91琪琪| 日韩精品视频播放 | 国产一级二级在线观看 | 男生女生搞鸡视频 | 亚洲欧洲成人精品久久一码二码 | 麻豆www.| 日韩在线高清视频 | 少妇肥臀大白屁股高清 | 嫩草免费视频 | 久久成人免费视频 | 天堂网a| 毛片av在线 | 日韩在线视频一区 | 亚洲无码高清精品 | 国产黄色美女视频 | 91一区二区视频 | 97在线观视频免费观看 | 国产第99页 | 久久精品视屏 | 国产区亚洲区 | 大尺度床戏揉捏胸视频 | 日本一区二区视频 | 美女网站免费视频 | 亚洲欧美日韩偷拍 | 成年人晚上看的视频 | 午夜啪视频 | 国产精品桃色 | 色婷婷综合久久久久中文一区二区 | 欧美性视频一区二区 | 五月天综合社区 | 久草这里只有精品 | 欧美做受高潮动漫 | 日韩电影在线观看一区二区 | 亚洲一区二区三区在线 | av有码在线观看 | 青青草国产成人av片免费 | 日韩精品视频网站 | 亚洲综合成人av | 中文字幕第一页在线视频 | 精品热| 久在线观看 | 黄色网页免费观看 | 成年人视频网 | av综合一区 | 色人阁视频 | 99在线小视频 | 亚洲影视在线观看 | 在线免费成人网 | 激情综合网激情 | 欧美成人免费一级 | 黄视频免费观看 | 自拍偷拍在线播放 | 日日摸日日添日日碰9学生露脸 | 国产精品第六页 | 国模人体私拍xvideos | 国产高潮久久久 | 91黑人精品一区二区三区 | 国产鲁鲁视频在线观看特色 | 午夜三级网站 | 在线免费中文字幕 | 超碰在线小说 | 国产精品69久久久久孕妇欧美 | 精品中出| 熟妇人妻va精品中文字幕 | 无码人妻熟妇av又粗又大 | 制服丝袜av电影 | 日韩在线精品强乱中文字幕 | 韩日免费视频 | 中文字幕精品一区二区精品 | 亚洲一区二区三区av无码 |