日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

UA OPTI570 量子力学25 2-level System

發布時間:2025/4/14 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 UA OPTI570 量子力学25 2-level System 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

UA OPTI570 量子力學25 2-level System

    • 2-level System與Rabi oscillation

2-level System與Rabi oscillation

Spin-1/2的方法可以用于任意二維態空間(稱之為2-level system),考慮E2\mathcal{E}_{2}E2?,假設它的基為{∣u1?,∣u2?}\{|u_1 \rangle,|u_2 \rangle\}{u1??,u2??},在這組基下,任意量子態可以表示為一個有兩個元素的列向量,任意算符可以表示為2×22 \times 22×2的矩陣,于是在這種與Spin-1/2類似的數學模型下,Spin-1/2的相關結果可以直接移植到2-level system中。

?∣ψ?∈E2\forall |\psi \rangle \in \mathcal{E}_2?ψ?E2?∣ψ?=a∣u1?+b∣u2?,?a,b∈C|\psi \rangle=a|u_1 \rangle+b|u_2 \rangle,\exists a,b \in \mathbb{C}ψ?=au1??+bu2??,?a,bC,并且?θ,?\exists \theta ,\phi?θ,?,
a=cos?θ2e?i?2,b=sin?θ2ei?2\begin{aligned} a = \cos \frac{\theta}{2} e^{-\frac{i \phi}{2}},b = \sin \frac{\theta}{2} e^{\frac{i \phi}{2}} \end{aligned}a=cos2θ?e?2i??,b=sin2θ?e2i???

注意θ,?\theta,\phiθ,?是任意參數坐標,并不一定代表真實物理空間中的角度。Pauli Spin Matrix的期望為
?σx?=sin?θcos???σy?=sin?θsin???σz?=cos?θ\langle \sigma_x \rangle = \sin \theta \cos \phi \\ \langle \sigma_y \rangle = \sin \theta \sin \phi \\ \langle \sigma_z \rangle = \cos \theta?σx??=sinθcos??σy??=sinθsin??σz??=cosθ

于是Bloch vector為
?σ?=[sin?θcos??sin?θsin??cos?θ]\langle \sigma \rangle = \left[ \begin{matrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{matrix} \right]?σ?=???sinθcos?sinθsin?cosθ????

例1 假設H=E1∣u1??u1∣+E2∣u2??u2∣H=E_1|u_1 \rangle \langle u_1 |+E_2|u_2 \rangle \langle u_2 |H=E1?u1???u1?+E2?u2???u2?,它的矩陣表示為diag(E1,E2)diag(E_1,E_2)diag(E1?,E2?),假設∣ψ(0)?=∣u1?|\psi(0) \rangle=|u_1 \rangleψ(0)?=u1??
∣ψ(t)?=e?iHt/?∣ψ(0)?=e?iE1t/?∣u1?|\psi(t) \rangle = e^{-iHt/\hbar}|\psi(0) \rangle=e^{-iE_1t/\hbar}|u_1 \rangleψ(t)?=e?iHt/?ψ(0)?=e?iE1?t/?u1??

這是一個很有趣的結果,在有像這道題定義的哈密頓量的系統中,如果初始量子態是某個本征態,那么量子態并不會隨時間演化到另一個本征態,而是會一直停留在這個本征子空間中,也就是說P(E2)=0P(E_2)=0P(E2?)=0。

例2 假設H=E1∣u1??u1∣+E2∣u2??u2∣+?1^H=E_1|u_1 \rangle \langle u_1 |+E_2|u_2 \rangle \langle u_2 |+\epsilon \hat 1H=E1?u1???u1?+E2?u2???u2?+?1^,則延用例1的設定,
∣ψ(t)?=e?i(E1+?)t/?∣u1?|\psi(t) \rangle = e^{-i(E_1+\epsilon)t/\hbar}|u_1 \rangleψ(t)?=e?i(E1?+?)t/?u1??

也就是同時同量改變兩個本征態的本征值不會影響例1的結論。

例3 假設H=E1∣u1??u1∣+E2∣u2??u2∣+WH=E_1|u_1 \rangle \langle u_1 |+E_2|u_2 \rangle \langle u_2 |+WH=E1?u1???u1?+E2?u2???u2?+W,其中算符W=W12∣u1??u2∣+W21∣u2??u1∣W=W_{12}|u_1 \rangle \langle u_2 |+W_{21}|u_2 \rangle \langle u_1 |W=W12?u1???u2?+W21?u2???u1?,則哈密頓量的矩陣表示為
[E1W12W21E2]=[E1W21?W21E2]=[E1+E22+E1?E22W12W21E1+E22?E1?E22]\left[ \begin{matrix} E_1 & W_{12} \\ W_{21} & E_2 \end{matrix} \right]=\left[ \begin{matrix} E_1 & W_{21}^* \\ W_{21} & E_2 \end{matrix} \right] = \left[ \begin{matrix} \frac{E_1+E_2}{2}+\frac{E_1-E_2}{2} & W_{12} \\ W_{21} & \frac{E_1+E_2}{2}-\frac{E_1-E_2}{2}\end{matrix} \right][E1?W21??W12?E2??]=[E1?W21??W21??E2??]=[2E1?+E2??+2E1??E2??W21??W12?2E1?+E2???2E1??E2???]

Em=E1+E22,δ=E1?E22E_m=\frac{E_1+E_2}{2},\delta = \frac{E_1-E_2}{2}Em?=2E1?+E2??,δ=2E1??E2??, 則
H=Em1^+[δW21?W21?δ]=Em1^+δ2+∣W21∣2σuσu=1δ2+∣W21∣2[W12+W212iW12?W212δ]H = E_m \hat 1+\left[ \begin{matrix} \delta & W_{21}^* \\ W_{21} & -\delta\end{matrix} \right]=E_m \hat 1+\sqrt{\delta^2+|W_{21}|^2}\sigma_u \\ \sigma_u = \frac{1}{\sqrt{\delta^2+|W_{21}|^2}}\left[ \begin{matrix} \frac{W_{12}+W_{21}}{2} \\ i\frac{W_{12}-W_{21}}{2} \\ \delta \end{matrix} \right]H=Em?1^+[δW21??W21???δ?]=Em?1^+δ2+W21?2?σu?σu?=δ2+W21?2?1????2W12?+W21??i2W12??W21??δ????

HHH的本征值為
E+=Em+δ2+∣W21∣2E1=Em?δ2+∣W21∣2E_+=E_m+\sqrt{\delta^2+|W_{21}|^2} \\ E_1 = E_m - \sqrt{\delta^2+|W_{21}|^2}E+?=Em?+δ2+W21?2?E1?=Em??δ2+W21?2?

本征態為
∣ψ+?=cos?θ2e?i?2∣u1?+sin?θ2ei?2∣u2?∣ψ??=?sin?θ2e?i?2∣u1?+cos?θ2ei?2∣u2?θ=arctan?∣W21∣δ,?=Arg(W12)|\psi_+ \rangle= \cos \frac{\theta}{2} e^{-\frac{i \phi}{2}}|u_1 \rangle+ \sin \frac{\theta}{2} e^{\frac{i \phi}{2}} |u_2 \rangle \\ |\psi_- \rangle=- \sin \frac{\theta}{2} e^{-\frac{i \phi}{2}}|u_1 \rangle+ \cos \frac{\theta}{2} e^{\frac{i \phi}{2}} |u_2 \rangle \\ \theta = \arctan \frac{|W_{21}|}{\delta},\phi = Arg(W_{12})ψ+??=cos2θ?e?2i??u1??+sin2θ?e2i??u2??ψ???=?sin2θ?e?2i??u1??+cos2θ?e2i??u2??θ=arctanδW21??,?=Arg(W12?)

下面討論任意量子態的演化規律:假設初始態為
∣ψ(0)?=a1(0)∣u1?+a2(0)∣u2?|\psi(0) \rangle = a_1(0)|u_1 \rangle + a_2(0)|u_2 \rangleψ(0)?=a1?(0)u1??+a2?(0)u2??

目標是得到
∣ψ(t)?=a1(t)∣u1?+a2(t)∣u2?|\psi(t) \rangle = a_1(t)|u_1 \rangle + a_2(t)|u_2 \rangleψ(t)?=a1?(t)u1??+a2?(t)u2??

這里的系數含義是狀態轉移概率幅,從0時刻到ttt時刻,由量子態∣u1?|u_1 \rangleu1??轉移到∣u2?|u_2 \rangleu2??與量子態∣u2?|u_2 \rangleu2??轉移到∣u1?|u_1 \rangleu1??的概率為
P1→2(t)=∣a2(t)∣2,P2→1(t)=∣a1(t)∣2P_{1 \to 2} (t)=|a_2(t)|^2,P_{2 \to 1}(t)=|a_1(t)|^2P12?(t)=a2?(t)2,P21?(t)=a1?(t)2

要做這個計算有下面兩種方法:

  • ∣ψ(0)?|\psi(0) \rangleψ(0)?變換到基{∣ψ+?,∣ψ??}\{|\psi_+ \rangle,|\psi_- \rangle\}{ψ+??,ψ???}的表象下,然后使用Time-evolving operator U(t)U(t)U(t)
  • 將Time-evolving operator U(t)U(t)U(t)變換到基{∣u1?,∣u2?}\{|u_1 \rangle,|u_2 \rangle\}{u1??,u2??}的表象下,然后應用∣ψ(t)?=U(t)∣ψ(0)?|\psi(t) \rangle = U(t)|\psi(0) \rangleψ(t)?=U(t)ψ(0)?
  • 結果為
    {a1(t)=a1(0)(cos?2θ2e?iΩt/2+sin?2θ2eiΩt/2)?ia2(0)sin?θe?i?sin?Ωt2a2(t)=a2(0)(sin?2θ2e?iΩt/2+cos?2θ2eiΩt/2)?ia1(0)sin?θei?sin?Ωt2\begin{cases} a_1(t)=a_1(0) \left( \cos^2 \frac{\theta}{2} e^{-i \Omega t/2}+ \sin^2 \frac{\theta}{2} e^{i \Omega t/2}\right)-ia_2(0)\sin \theta e^{-i \phi}\sin \frac{\Omega t}{2} \\ a_2(t)=a_2(0) \left( \sin^2 \frac{\theta}{2} e^{-i \Omega t/2}+ \cos^2 \frac{\theta}{2} e^{i \Omega t/2}\right)-ia_1(0)\sin \theta e^{i \phi}\sin \frac{\Omega t}{2}\end{cases}{a1?(t)=a1?(0)(cos22θ?e?iΩt/2+sin22θ?eiΩt/2)?ia2?(0)sinθe?i?sin2Ωt?a2?(t)=a2?(0)(sin22θ?e?iΩt/2+cos22θ?eiΩt/2)?ia1?(0)sinθei?sin2Ωt??

    其中
    Ω=E+?E??=2?δ2+∣W21∣2\Omega = \frac{E_+-E_-}{\hbar}=\frac{2}{\hbar}\sqrt{\delta^2+|W_{21}|^2}Ω=?E+??E???=?2?δ2+W21?2?

    考慮一個特例,比如a1(0)=1,a2(0)=0a_1(0)=1,a_2(0)=0a1?(0)=1,a2?(0)=0,則
    P1→2(t)=sin?2θsin?2Ωt2,P1→1=1?P1→2(t)P_{1 \to 2}(t) = \sin^2 \theta \sin^2 \frac{\Omega t}{2},P_{1 \to 1}=1-P_{1 \to 2}(t)P12?(t)=sin2θsin22Ωt?,P11?=1?P12?(t)

    定義
    Δ=E1?E2?=2δ?Ω0=2?W21=∣Ω0∣ei?\Delta = \frac{E_1-E_2}{\hbar} = \frac{2 \delta }{\hbar} \\ \Omega_0 = \frac{2}{\hbar}W_{21} = |\Omega_0|e^{i \phi}Δ=?E1??E2??=?2δ?Ω0?=?2?W21?=Ω0?ei?

    則哈密頓量為
    H{u}=[EmEm]+?2[ΔΩ0?Ω0?Δ]E±=Em±?2Ω,Ω=Δ2+∣Ω0∣2H_{\{u\}} = \left[ \begin{matrix} E_m \\ & E_m \end{matrix} \right] +\frac{\hbar}{2}\left[ \begin{matrix} \Delta & \Omega_0^* \\ \Omega_0 & - \Delta \end{matrix} \right] \\ E_{\pm} = E_m \pm \frac{\hbar}{2}\Omega,\ \Omega = \sqrt{\Delta^2+|\Omega_0|^2}H{u}?=[Em??Em??]+2??[ΔΩ0??Ω0???Δ?]E±?=Em?±2??Ω,?Ω=Δ2+Ω0?2?

    狀態轉移概率為
    P1→2(t)=∣Ω0∣2Ω2sin?2Ωt2P_{1 \to 2}(t)=\frac{|\Omega_0|^2}{\Omega^2}\sin^2 \frac{\Omega t}{2}P12?(t)=Ω2Ω0?2?sin22Ωt?

    這個公式被稱為Rabi公式,在2-level system中處理狀態轉移時這個公式具有通用性,其中Ω0\Omega_0Ω0?被稱為Resonant Rabi frequency;Ω\OmegaΩ被稱為Rabi frequency或者generalized Rabi frequency;Δ\DeltaΔ被稱為detuning;這個公式是Rabi Oscillation模型的一部分;∣Ω0∣2Ω2\frac{|\Omega_0|^2}{\Omega^2}Ω2Ω0?2?被稱為Rabi oscillations的振幅;在Δ=0,Ω=Ω0\Delta=0,\Omega=\Omega_0Δ=0,Ω=Ω0?時,稱P1→2(t)P_{1 \to 2}(t)P12?(t)的半個周期,t=π∣Ω0∣t=\frac{\pi}{|\Omega_0|}t=Ω0?π?π\piπ-pulse,整個周期為2π2\pi2π-pulse。

    Bloch vector為
    ?σ?=(?σx?,?σy?,?σz?)\langle \sigma \rangle = (\langle \sigma_x \rangle,\langle \sigma_y \rangle,\langle \sigma_z \rangle)?σ?=(?σx??,?σy??,?σz??)

    在量子態∣ψ?=a1∣u1?+a2∣u2?|\psi \rangle=a_1|u_1 \rangle+a_2 |u_2 \rangleψ?=a1?u1??+a2?u2??中,
    ?σz?=[a1?a2?][100?1][a1a2]=∣a1∣2?∣a2∣2\langle \sigma_z \rangle = \left[\begin{matrix} a_1^* & a_2^* \end{matrix} \right]\left[\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right]\left[\begin{matrix} a_1 \\ a_2 \end{matrix} \right]=|a_1|^2-|a_2|^2?σz??=[a1???a2???][10?0?1?][a1?a2??]=a1?2?a2?2

    類似地,
    ?σx?=a1?a2+a1a2?,?σy?=?ia1?a2+ia1a2?\langle \sigma_x \rangle=a_1^*a_2+a_1a_2^*,\langle \sigma_y \rangle=-ia_1^*a_2+ia_1a_2^*?σx??=a1??a2?+a1?a2??,?σy??=?ia1??a2?+ia1?a2??

    總結

    以上是生活随笔為你收集整理的UA OPTI570 量子力学25 2-level System的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。