日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

马尔可夫“折棍子”过程 Markovian Stick-breaking Process 简介

發布時間:2025/4/14 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 马尔可夫“折棍子”过程 Markovian Stick-breaking Process 简介 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

馬爾可夫“折棍子”過程 Markovian Stick-breaking Process 簡介

  • Markovian Stick-breaking Process的構造
    • GEM分布
    • Generator
    • Markovian Stick-breaking

Markovian Stick-breaking Process的構造

假設X?N\mathcal{X} \subset \mathbb{N}X?N是一個離散事件空間,μ\muμX\mathcal{X}X上的一個測度,另外引入參數θ>0\theta>0θ>0(X,2X,μ)(\mathcal{X},2^{\mathcal{X}},\mu)(X,2X,μ)上參數為(μ,θ)(\mu,\theta)(μ,θ)的Dirichlet Process是可測空間(X,2X)\mathcal{X},2^{\mathcal{X}})X,2X)上所有概率測度組成的集合MXM_{\mathcal{X}}MX?上的概率測度,如果PPP是Dirichlet Process對應于X\mathcal{X}X的分割{Ai}i=1n\{A_i\}_{i=1}^n{Ai?}i=1n?的一個樣本,那么
(P(A1),?,P(An))~Dirichlet(θμ(A1),?,θμ(An))(P(A_1),\cdots,P(A_n)) \sim Dirichlet(\theta \mu(A_1),\cdots,\theta \mu(A_n))(P(A1?),?,P(An?))Dirichlet(θμ(A1?),?,θμ(An?))關于Dirichlet分布的介紹可以看UA MATH564 概率論 Dirichlet分布。

Dirichlet Process可以用“折棍子”過程(Stick-breaking Process)來表示(A constructive definition of Dirichlet priors, J Sethuraman 1994)。折棍子過程的直觀介紹可以參考從折棍子(Stick Breaking)模型到狄利克雷過程(DP)。對于Dirichlet Process的樣本PPP
P=∑j=1∞PjδTjP = \sum_{j=1}^{\infty}P_j\delta_{T_j}P=j=1?Pj?δTj??

其中P={Pj}j≥1\textbf{P}=\{P_j\}_{j \ge 1}P={Pj?}j1?服從GEM(θ)GEM(\theta)GEM(θ)分布,下文再詳細介紹這個分布;T={Tj}j≥1\textbf{T}=\{T_j\}_{j \ge 1}T={Tj?}j1?是iid的序列,樣本空間為X\mathcal{X}X且分布為μ\muμ∑j=1∞PjδTj\sum_{j=1}^{\infty}P_j\delta_{T_j}j=1?Pj?δTj??這種構造被稱為折棍子過程。如果{Tj}j≥1\{T_j\}_{j \ge 1}{Tj?}j1?由Markov Chain定義,那么這個過程就叫Markovian Stick-breaking Process(Dietz, Z., Lippitt, W., Sethuraman, S.: Stick-breaking processes, clumping, and Markov chain occupation laws. Under review, https://www.math.arizona.edu/ sethuram/papers/DLS.pdf),具體的構造如下:

定義一個Markov transition kernel (可以參考UA MATH565C 隨機微分方程V Markov Family簡介)
Q=I+G/θQ = I+G/\thetaQ=I+G/θ

其中GGG是generator matrix,G={Gij:i,j∈X}G=\{G_{ij}:i,j \in \mathcal{X}\}G={Gij?:i,jX}滿足
Gij>0Gii=?∑j≠iGijG_{ij}>0 \\ G_{ii} = -\sum_{j \ne i}G_{ij}Gij?>0Gii?=?j?=i?Gij?

T\textbf TT服從transition kernel為QQQ的平穩Markov Chain。

GEM分布

GEM的全名是Griffiths-Engel-McCloskey,它是一個residual allocation sequence,作用是把一個資源分配給無限個單位:我們先把這一個資源的X1X_1X1?分給第一個單位,假設X1~Beta(1,θ)X_1 \sim Beta(1,\theta)X1?Beta(1,θ),則第一個單位分得
P1=X1P_1=X_1P1?=X1?

則剩下的資源為1?P11-P_11?P1?;然后我們把剩下的資源的X2X_2X2?分給第二個單位,X2~Beta(1,θ)X_2 \sim Beta(1,\theta)X2?Beta(1,θ)且與X1X_1X1?獨立,則第二個單位分得
P2=X2(1?P1)=X2(1?X1)P_2=X_2(1-P_1)=X_2(1-X_1)P2?=X2?(1?P1?)=X2?(1?X1?)且剩下的資源為1?P1?P2=1?X1?X2(1?X1)=(1?X2)(1?X1)1-P_1-P_2=1-X_1-X_2(1-X_1)=(1-X_2)(1-X_1)1?P1??P2?=1?X1??X2?(1?X1?)=(1?X2?)(1?X1?);以此類推,第jjj個單位分得的資源為
Pj=Xj∏i=1j?1(1?Xi)P_j = X_j \prod_{i=1}^{j-1}(1-X_i)Pj?=Xj?i=1j?1?(1?Xi?)

且剩余資源為∏i=1j(1?Xi)\prod_{i=1}^j(1-X_i)i=1j?(1?Xi?)。記P={Pj}j≥1\textbf P=\{P_j\}_{j \ge 1}P={Pj?}j1?,這個序列表示我們分配在每個單位上的資源,稱P\textbf PP服從的分布為GEM(θ)GEM(\theta)GEM(θ)

Generator

稱實值矩陣G=(Gxy)x,y∈XG=(G_{xy})_{x,y \in \mathcal{X}}G=(Gxy?)x,yX?為generator kernel (or say generator matrix) over X\mathcal{X}X,如果

  • ?x,y∈X\forall x,y \in \mathcal{X}?x,yX, x≠yx \ne yx?=y, Gxy≥0G_{xy} \ge 0Gxy?0
  • ?x∈X\forall x \in \mathcal{X}?xX, Gxx=?∑y∈X?{x}GxyG_{xx}=-\sum_{y \in \mathcal{X}\setminus \{x\}}G_{xy}Gxx?=?yX?{x}?Gxy?
  • θG=sup?x∈X∣Gxx∣<∞\theta^G=\sup_{x \in \mathcal{X}}|G_{xx}|<\inftyθG=supxX?Gxx?<
  • 如果μ\muμX\mathcal{X}X上的一個概率測度,并且μTG=0\mu^TG=0μTG=0,則稱μ\muμGGG的平穩概率分布。

    用一個比較具體的例子來說明這個定義。考慮擲色子的事件空間X={1,2,3,4,5,6}\mathcal{X}=\{1,2,3,4,5,6\}X={1,2,3,4,5,6},取Gxy=∣x?y∣G_{xy}=|x-y|Gxy?=x?y,則
    G=[?15123451?15234512?15345123?15451234?15512345?15]G=\left[ \begin{matrix} -15& 1 & 2 & 3 & 4 & 5 \\ 1 & -15 & 2 & 3 & 4 & 5 \\ 1 & 2 & -15 & 3 & 4 & 5 \\ 1 & 2 & 3 & -15 & 4 & 5 \\ 1& 2 & 3 & 4 & -15 & 5 \\ 1 & 2 & 3& 4 & 5 & -15 \end{matrix} \right]G=??????????1511111?1?152222?22?15333?333?1544?4444?155?55555?15??????????

    這個矩陣就是一個generator;如果這個色子是公平的,那么它的概率分布就是
    μ=[1/61/61/61/61/61/6]\mu=\left[ \begin{matrix}1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \end{matrix} \right]μ=[1/6?1/6?1/6?1/6?1/6?1/6?]

    不難驗證,μTG=0\mu^TG=0μTG=0,也就是說μ\muμ關于generator GGG是平穩分布。需要注意的是generator matrix可能不止一個。

    Markovian Stick-breaking

    假設GGGX\mathcal{X}X一個不可約、正定、常返的Generator matrix,且平穩分布為μ\muμ,取θ>θG\theta>\theta^Gθ>θG,定義Q=I+G/θQ=I+G/\thetaQ=I+G/θ,如果P~GEM(θ)\textbf{P}\sim GEM(\theta)PGEM(θ)T\textbf TT服從transition kernel為QQQ的平穩、齊次馬爾可夫鏈,且與P\textbf PP獨立,則X\mathcal{X}X上的random measure
    ν=∑j≥1PjδTj\nu = \sum_{j \ge 1}P_j \delta_{T_j}ν=j1?Pj?δTj??T1T_1T1?構成的二元組(ν,T1)(\nu,T_1)(ν,T1?)服從Markovian Stick-breaking process,記為(ν,T1)~MSB(G)(\nu,T_1) \sim MSB(G)(ν,T1?)MSB(G)

    《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀

    總結

    以上是生活随笔為你收集整理的马尔可夫“折棍子”过程 Markovian Stick-breaking Process 简介的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 精品国产一区二区三区久久狼黑人 | 双性人做受视频 | 99精品视频在线播放免费 | 亚洲女人毛茸茸 | 黄色成年人 | h成人在线 | 六月丁香婷婷综合 | 中文字幕精品久久 | 久久99精品久久久久久噜噜 | 黄色片免费视频 | 涩涩涩av | 日日操夜夜干 | 岛国精品一区二区 | 国产视频三级 | 天天看天天做 | 欧美日韩在线视频观看 | 国产成人欧美一区二区三区91 | 欧美日本一区 | 国模无码视频一区 | 国产亚洲高清视频 | 成人高清网站 | 国产一级视频免费观看 | 欧美日韩激情视频 | 亚洲视频手机在线观看 | 日韩高清三区 | 超碰97免费| 久久久久国产精品午夜一区 | 亚洲va欧美va天堂v国产综合 | 秋霞成人av | 日本三级中文字幕在线观看 | 国产综合区 | 毛片无遮挡高清免费观看 | 亚洲一区免费在线 | 国产精品综合一区二区 | 亚洲午夜久久久久久久久久久 | 欧美 日韩 国产 成人 在线 91 | 久久香蕉网 | 少妇特黄a一区二区三区88av | 超碰免费成人 | 天天干,天天爽 | 日韩欧美亚洲国产 | 看黄网站在线 | 影音av在线 | 亚洲欧美成人综合 | 日韩在线欧美在线 | 日本伊人影院 | 精品国产1区2区 | 色8久久| 成年人网站免费观看 | 无码人妻精品一区二区蜜桃网站 | 亚洲精品123区 | 武林美妇肉伦娇喘呻吟 | 天天舔天天操天天干 | 欧美视频在线播放 | 欧美丝袜脚交 | 国产成人精品123区免费视频 | 日日夜夜免费视频 | 欧美性猛交99久久久久99按摩 | 国产精品99久久久久久久久久久久 | 爱爱爱免费视频 | 国产日产精品一区二区三区四区 | 亚洲国产精品无码久久久久高潮 | 青青草国产在线 | a级免费网站 | 天天爽天天射 | 亚洲天堂视频网 | 依人综合 | 日本成人免费网站 | 精品午夜一区二区三区在线观看 | 99精品视频免费在线观看 | 国产中文字幕二区 | 深夜激情网站 | 黑鬼大战白妞高潮喷白浆 | 精品久久网 | 视频国产在线 | 国产精品扒开腿做爽爽 | 成人国产一区二区三区精品麻豆 | missav | 免费高清av在线看 | 成人做爰免费视频免费看 | 91男女视频 | 亚洲精品视频免费看 | 偷拍欧美另类 | 日韩草逼 | 亚洲 欧美 激情 小说 另类 | 亚洲综合成人亚洲 | 最新国产三级 | 色婷婷在线影院 | 无码人妻aⅴ一区二区三区69岛 | 法国伦理少妇愉情 | 欧美一级淫片007 | 精品国产区 | 狠狠操影视 | youjizz麻豆| 91黄色免费观看 | 午夜精品久久久久久久久久 | 雪花飘电影在线观看免费高清 | 青青草国产精品视频 | 免费黄色网址观看 | 国产精品资源网站 |