日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

UA MATH564 概率论 QE练习 Glivenko–Cantelli定理

發(fā)布時(shí)間:2025/4/14 编程问答 17 豆豆
生活随笔 收集整理的這篇文章主要介紹了 UA MATH564 概率论 QE练习 Glivenko–Cantelli定理 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

UA MATH564 概率論 QE練習(xí) Glivenko–Cantelli定理

  • Glivenko–Cantelli定理


Part a
Notice P(Xi≤t)=F(t),i=1,?,nP(X_i \le t) = F(t),i = 1,\cdots,nP(Xi?t)=F(t),i=1,?,n
E[F^n(t)]=E[1n∑i=1nI(Xi≤t)]=1n∑i=1nE[I(Xi≤t)]=1n∑i=1nP(Xi<t)=F(t)E[\hat{F}_n(t)] = E \left[ \frac{1}{n}\sum_{i=1}^n I(X_i \le t) \right] = \frac{1}{n}\sum_{i=1}^nE \left[ I(X_i \le t) \right] = \frac{1}{n}\sum_{i=1}^nP(X_i<t) = F(t)E[F^n?(t)]=E[n1?i=1n?I(Xi?t)]=n1?i=1n?E[I(Xi?t)]=n1?i=1n?P(Xi?<t)=F(t)

Part b
P(F^n(t)=k/n)=P(1n∑i=1nI(Xi≤t)=q)=P(∑i=1nI(Xi≤t)=k)=Cnk[F(t)]k[1?F(t)]n?k,k=1,?,nP(\hat{F}_n(t)=k/n) = P \left( \frac{1}{n}\sum_{i=1}^n I(X_i \le t) = q \right) = P \left( \sum_{i=1}^n I(X_i \le t) = k \right) \\ = C_n^k[F(t)]^{k}[1-F(t)]^{n-k},k=1,\cdots,nP(F^n?(t)=k/n)=P(n1?i=1n?I(Xi?t)=q)=P(i=1n?I(Xi?t)=k)=Cnk?[F(t)]k[1?F(t)]n?k,k=1,?,n

This means nF^n(t)~Binom(n,F(t))n\hat{F}_n(t) \sim Binom(n,F(t))nF^n?(t)Binom(n,F(t)).

Part c
Calculate
E[F^n(t)]=1nE[nF^n(t)]=F(t)Var(F^n(t))=1n2Var(nF^n(t))=F(t)[1?F(t)]nE[\hat{F}_n(t)] = \frac{1}{n}E[n\hat{F}_n(t)] = F(t) \\ Var(\hat{F}_n(t)) = \frac{1}{n^2}Var(n\hat{F}_n(t)) = \frac{F(t)[1-F(t)]}{n}E[F^n?(t)]=n1?E[nF^n?(t)]=F(t)Var(F^n?(t))=n21?Var(nF^n?(t))=nF(t)[1?F(t)]?

By CLT,
F^n(t)?F(t)F(t)[1?F(t)]n→dN(0,1)?n[F^n(t)?F(t)]→dN(0,F(t)[1?F(t)])\frac{\hat{F}_n(t) - F(t)}{\sqrt{\frac{F(t)[1-F(t)]}{n}}} \to_d N(0,1) \Rightarrow \sqrt{n}[\hat{F}_n(t) - F(t)] \to_d N(0,F(t)[1-F(t)])nF(t)[1?F(t)]??F^n?(t)?F(t)?d?N(0,1)?n?[F^n?(t)?F(t)]d?N(0,F(t)[1?F(t)])

Glivenko–Cantelli定理

Glivenko–Cantelli定理說(shuō)的是當(dāng)n→∞n \to \inftyn時(shí),F^n\hat F_nF^n?收斂到FFF。上面的題目提到了,對(duì)于給定的tttF^n(t)\hat{F}_n(t)F^n?(t)會(huì)收斂到F(t)F(t)F(t),因?yàn)?br /> Var(F^n(t))=F(t)[1?F(t)]n→0,asn→∞Var(\hat{F}_n(t)) = \frac{F(t)[1-F(t)]}{n} \to 0,\ as \ n\to \inftyVar(F^n?(t))=nF(t)[1?F(t)]?0,?as?n

因此F^n(t)?F(t)→L20\hat{F}_n(t) - F(t) \to_{L_2} 0F^n?(t)?F(t)L2??0。一個(gè)從分析出發(fā)的證明會(huì)顯得更簡(jiǎn)單,經(jīng)驗(yàn)分布的性質(zhì)說(shuō)明
∣F^n(xj)?F(xj)∣≤1n,?j=1,?,n?1|\hat{F}_n(x_j) - F(x_j)| \le \frac{1}{n},\forall j = 1,\cdots,n-1F^n?(xj?)?F(xj?)n1?,?j=1,?,n?1

下面估計(jì)
sup?∣F^n(x)?F(x)∣≤max?∣F^n(xj)?F(xj)∣+1n\sup|\hat{F}_n(x) - F(x)| \le \max|\hat{F}_n(x_j) - F(x_j)| + \frac{1}{n}supF^n?(x)?F(x)maxF^n?(xj?)?F(xj?)+n1?

當(dāng)n→∞n \to \inftyn時(shí),max?∣F^n(xj)?F(xj)∣→0\max|\hat{F}_n(x_j) - F(x_j)| \to 0maxF^n?(xj?)?F(xj?)0,因此F^n→L∞F\hat F_n \to_{L_{\infty}} FF^n?L??F

總結(jié)

以上是生活随笔為你收集整理的UA MATH564 概率论 QE练习 Glivenko–Cantelli定理的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。