日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > linux >内容正文

linux

Linux驱动之内核加载模块过程分析

發(fā)布時間:2025/4/9 linux 51 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Linux驱动之内核加载模块过程分析 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

Linux內(nèi)核支持動態(tài)的加載模塊運行:比如insmod first_drv.ko,這樣就可以將模塊加載到內(nèi)核所在空間供應(yīng)用程序調(diào)用。現(xiàn)在簡單描述下insmod first_drv.ko的過程

1、insmod也是一個用戶進程

2、insmod進程從命令行中讀取要鏈接的模塊名字:first_drv.ko

3、insmod進程確定模塊對象代碼所在的文件在系統(tǒng)目錄樹中的位置,即first_drv.ko文件所在的位置

4、insmod進程從文件系統(tǒng)所在的存儲區(qū)讀入存有模塊目標代碼的文件

5、insmod調(diào)用init_module系統(tǒng)調(diào)用。函數(shù)將進入內(nèi)核到達內(nèi)核函數(shù)?sys_init_module,然后sys_init_module函數(shù)將模塊二進制文件復(fù)制到內(nèi)核,然后由內(nèi)核完成剩余的任務(wù)。

下面內(nèi)容轉(zhuǎn)載自https://blog.csdn.net/chrovery/article/details/51088425

一、前言
對于現(xiàn)在編譯的一些module要insmod在系統(tǒng)上時,可能會報各種各樣的錯誤。這些錯誤仔細研讀內(nèi)核源碼,都能找出原因。2.6 內(nèi)核以前的insmod部分主要依賴于modutils源碼包,在用戶層基本將工作完成,加載過程參考前一篇文章。2.6 內(nèi)核以后的做法是將大部分的原來用戶級操作納入內(nèi)核中來處理,無論是邏輯上還是代碼量上都比原來減少了許多,通過busybox中的insmod命令與內(nèi)核接入。把這套源代碼弄明白,就不會出現(xiàn)加載模塊時出現(xiàn)的各種各樣的錯誤,可以寫一些patch代碼,修正這些內(nèi)核要檢查的項,比如vermagic和crc等等。

二、相關(guān)結(jié)構(gòu)

1.模塊依賴關(guān)系
struct module_use {
struct list_head source_list;
struct list_head target_list;
struct module *source, *target;
};

2.模塊狀態(tài)
enum module_state {
MODULE_STATE_LIVE, /* Normal state. */
MODULE_STATE_COMING, /* Full formed, running module_init. */
MODULE_STATE_GOING, /* Going away. */
MODULE_STATE_UNFORMED, /* Still setting it up. */
};

3.模塊計數(shù)
struct module_ref {
unsigned long incs;
unsigned long decs;
} __attribute((aligned(2 * sizeof(unsigned long))));

4.模塊結(jié)構(gòu)
struct module
{
enum module_state state;
/* Member of list of modules */
struct list_head list;
/* Unique handle for this module */
char name[MODULE_NAME_LEN];
/* Sysfs stuff. */
struct module_kobject mkobj;
struct module_attribute *modinfo_attrs;
const char *version;
const char *srcversion;
struct kobject *holders_dir;
/* Exported symbols */
const struct kernel_symbol *syms;
const unsigned long *crcs;
unsigned int num_syms;
/* Kernel parameters. */
struct kernel_param *kp;
unsigned int num_kp;
/* GPL-only exported symbols. */
unsigned int num_gpl_syms;
const struct kernel_symbol *gpl_syms;
const unsigned long *gpl_crcs;

#ifdef CONFIG_UNUSED_SYMBOLS
/* unused exported symbols. */
const struct kernel_symbol *unused_syms;
const unsigned long *unused_crcs;
unsigned int num_unused_syms;
/* GPL-only, unused exported symbols. */
unsigned int num_unused_gpl_syms;
const struct kernel_symbol *unused_gpl_syms;
const unsigned long *unused_gpl_crcs;
#endif

#ifdef CONFIG_MODULE_SIG
/* Signature was verified. */
bool sig_ok;
#endif

/* symbols that will be GPL-only in the near future. */
const struct kernel_symbol *gpl_future_syms;
const unsigned long *gpl_future_crcs;
unsigned int num_gpl_future_syms;

/* Exception table */
unsigned int num_exentries;
struct exception_table_entry *extable;

/* Startup function. */
int (*init)(void);

/* If this is non-NULL, vfree after init() returns */
void *module_init;

/* Here is the actual code + data, vfree'd on unload. */
void *module_core;

/* Here are the sizes of the init and core sections */
unsigned int init_size, core_size;

/* The size of the executable code in each section. */
unsigned int init_text_size, core_text_size;

/* Size of RO sections of the module (text+rodata) */
unsigned int init_ro_size, core_ro_size;

/* Arch-specific module values */
struct mod_arch_specific arch;

unsigned int taints; /* same bits as kernel:tainted */

#ifdef CONFIG_GENERIC_BUG
/* Support for BUG */
unsigned num_bugs;
struct list_head bug_list;
struct bug_entry *bug_table;
#endif

#ifdef CONFIG_KALLSYMS
Elf_Sym *symtab, *core_symtab;
unsigned int num_symtab, core_num_syms;
char *strtab, *core_strtab;

/* Section attributes */
struct module_sect_attrs *sect_attrs;

/* Notes attributes */
struct module_notes_attrs *notes_attrs;
#endif

char *args;

#ifdef CONFIG_SMP
/* Per-cpu data. */
void __percpu *percpu;
unsigned int percpu_size;
#endif

#ifdef CONFIG_TRACEPOINTS
unsigned int num_tracepoints;
struct tracepoint * const *tracepoints_ptrs;
#endif

#ifdef HAVE_JUMP_LABEL
struct jump_entry *jump_entries;
unsigned int num_jump_entries;
#endif

#ifdef CONFIG_TRACING
unsigned int num_trace_bprintk_fmt;
const char **trace_bprintk_fmt_start;
#endif

#ifdef CONFIG_EVENT_TRACING
struct ftrace_event_call **trace_events;
unsigned int num_trace_events;
#endif

#ifdef CONFIG_FTRACE_MCOUNT_RECORD
unsigned int num_ftrace_callsites;
unsigned long *ftrace_callsites;
#endif

#ifdef CONFIG_MODULE_UNLOAD
/* What modules depend on me? */
struct list_head source_list;
/* What modules do I depend on? */
struct list_head target_list;

/* Who is waiting for us to be unloaded */
struct task_struct *waiter;

/* Destruction function. */
void (*exit)(void);
struct module_ref __percpu *refptr;
#endif

#ifdef CONFIG_CONSTRUCTORS
/* Constructor functions. */
ctor_fn_t *ctors;
unsigned int num_ctors;
#endif
};

5.ELF文件信息結(jié)構(gòu)
struct load_info {
Elf_Ehdr *hdr;//指向elf頭
unsigned long len;
Elf_Shdr *sechdrs;//指向節(jié)區(qū)頭
char *secstrings;//指向字符串節(jié)區(qū)中節(jié)區(qū)名稱所在的地址
char *strtab;//指向字符串節(jié)區(qū)的內(nèi)容所在地址
unsigned long symoffs;
unsigned long stroffs;
struct _ddebug *debug;
unsigned int num_debug;
bool sig_ok;//模塊簽名檢查
struct {
unsigned int sym;//模塊的符號表節(jié)區(qū)索引號
unsigned int str;//模塊的字符串節(jié)區(qū)索引號
unsigned int mod;//模塊的".gnu.linkonce.this_module"節(jié)區(qū)索引號
unsigned int vers;//模塊的"__versions"節(jié)區(qū)索引號
unsigned int info;//模塊的.modinfo節(jié)區(qū)索引號
unsigned int pcpu;
} index;
};

三、源代碼解析
//busybox中insmod.c文件中
int insmod_main(int argc UNUSED_PARAM, char **argv)
{
char *filename;
int rc;

IF_FEATURE_2_4_MODULES(
getopt32(argv, INSMOD_OPTS INSMOD_ARGS);
argv += optind - 1;
);

//取得要加載模塊的路徑名
filename = *++argv;
if (!filename)
bb_show_usage();

rc = bb_init_module(filename, parse_cmdline_module_options(argv,0));
if (rc)
bb_error_msg("can't insert '%s': %s", filename, moderror(rc));

return rc;
}

char* FAST_FUNC parse_cmdline_module_options(char **argv, int quote_spaces)
{
char *options;
int optlen;

options = xzalloc(1);
optlen = 0;

//遍歷模塊名后邊的模塊參數(shù)
while (*++argv) {
const char *fmt;
const char *var;
const char *val;

var = *argv;
//為options分配空間
options = xrealloc(options, optlen + 2 + strlen(var) + 2);
fmt = "%.*s%s ";
//若'='存在于var中,則返回'='在var中出現(xiàn)的第一個位置的指針,否則返回字符串var末尾的空字符。
val = strchrnul(var, '=');
if (quote_spaces) {//為0
if (*val) { /* has var=val format. skip '=' */
val++;
if (strchr(val, ' '))
fmt = "%.*s\"%s\" ";
}
}
//模塊參數(shù)按格式存入options,"%.*s%s "中“*”對應(yīng)(int)(val - var),第一個s對應(yīng)var,表示在var字符串中去除(int)(val - var)個字符顯示,即=前邊的字符被去除。實際上只是將val字符串(即=后邊的字符串)存入options指針指向的地址。
optlen += sprintf(options + optlen, fmt, (int)(val - var), var, val);
}

return options;
}

int FAST_FUNC bb_init_module(const char *filename, const char *options)
{
size_t image_size;
char *image;
int rc;
bool mmaped;

if (!options)
options = "";

//若是2.6以前的版本調(diào)用bb_init_module_24(),這種處理就是以前modutils對模塊的加載處理。這里要研究的是2.6以后的模塊加載處理
#if ENABLE_FEATURE_2_4_MODULES
if (get_linux_version_code() < KERNEL_VERSION(2,6,0))
return bb_init_module_24(filename, options);
#endif

image_size = INT_MAX - 4095;//初始化為文件的最大值
mmaped = 0;

//把模塊文件映射進內(nèi)存,并返回映射空間的大小image_size
image = try_to_mmap_module(filename, &image_size);
if (image) {
mmaped = 1;
} else {
errno = ENOMEM; /* may be changed by e.g. open errors below */
image = xmalloc_open_zipped_read_close(filename, &image_size);
if (!image)
return -errno;
}
errno = 0;

//系統(tǒng)調(diào)用,對應(yīng)內(nèi)核函數(shù)是sys_init_module()函數(shù),進入到內(nèi)核空間
init_module(image, image_size, options);
rc = errno;
if (mmaped)
munmap(image, image_size);
else
free(image);
return rc;
}

void* FAST_FUNC try_to_mmap_module(const char *filename, size_t *image_size_p)
{
void *image;
struct stat st;
int fd;

//打開模塊.ko文件,獲得文件描述符
fd = xopen(filename, O_RDONLY);
//由文件描述符取得文件狀態(tài)
fstat(fd, &st);
image = NULL;

//文件的size是否超過設(shè)定的文件最大值
if (st.st_size <= *image_size_p) {
size_t image_size = st.st_size;//文件size
//以只讀的方式將.ko文件映射到內(nèi)存中,返回在內(nèi)存中的起始地址
image = mmap(NULL, image_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (image == MAP_FAILED) {
image = NULL;
}
//檢查一下.ko文件的開頭是否為ELF標準格式
else if (*(uint32_t*)image != SWAP_BE32(0x7f454C46)) {
munmap(image, image_size);
image = NULL;
} else {
*image_size_p = image_size;//返回文件size
}
}
close(fd);
return image;
}

//sys_init_module(void __user *umod,unsigned long len,const char __user *uargs)
//umod : 是一個指針,指向用戶地址空間中的區(qū)域,模塊的二進制代碼位于其中。
//len : 該區(qū)域的長度。
//uargs : 是一個指針,指定了模塊的參數(shù)。
SYSCALL_DEFINE3(init_module, void __user *, umod,unsigned long, len, const char __user *, uargs)
{
int err;
struct load_info info = { };

//是否有權(quán)限加載模塊:capable(CAP_SYS_MODULE)
err = may_init_module();
if (err)
return err;

pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",umod, len, uargs);

//將用戶空間的.ko文件的內(nèi)存映像(elf格式)拷貝到內(nèi)核空間,并填充info結(jié)構(gòu)中
err = copy_module_from_user(umod, len, &info);
if (err)
return err;

//模塊的主要操作
return load_module(&info, uargs, 0);
}

static int copy_module_from_user(const void __user *umod, unsigned long len,struct load_info *info)
{
int err;

//模塊文件映射到用戶空間的size(即.ko文件本身的size)
info->len = len;
if (info->len < sizeof(*(info->hdr)))
return -ENOEXEC;

err = security_kernel_module_from_file(NULL);
if (err)
return err;

//在內(nèi)核空間為模塊分配內(nèi)存,并將該內(nèi)存的起始地址付給成員hdr,即該成員現(xiàn)在指向的是整個模塊內(nèi)存
info->hdr = vmalloc(info->len);
if (!info->hdr)
return -ENOMEM;

//將用戶空間的.ko文件的內(nèi)存映像(elf格式)拷貝到內(nèi)核空間info->hdr處
if (copy_from_user(info->hdr, umod, info->len) != 0) {
vfree(info->hdr);
return -EFAULT;
}
return 0;
}

static int load_module(struct load_info *info, const char __user *uargs,int flags)
{
struct module *mod;
long err;

err = module_sig_check(info);//檢查證書
if (err)
goto free_copy;
err = elf_header_check(info);//檢查elf頭
if (err)
goto free_copy;

//布置模塊,并分配相關(guān)的內(nèi)存,把相關(guān)節(jié)區(qū)復(fù)制到最終鏡像中
mod = layout_and_allocate(info, flags);
if (IS_ERR(mod)) {
err = PTR_ERR(mod);
goto free_copy;
}

//因為前邊已將模塊鏡像復(fù)制到了內(nèi)核空間的內(nèi)存中,module對象也指向?qū)?yīng)的位置,然后將此module對象添加到modules鏈表中
err = add_unformed_module(mod);
if (err)
goto free_module;

#ifdef CONFIG_MODULE_SIG
mod->sig_ok = info->sig_ok;
if (!mod->sig_ok) {
printk_once(KERN_NOTICE
"%s: module verification failed: signature and/or"
" required key missing - tainting kernel\n",mod->name);
add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_STILL_OK);
}
#endif

//為節(jié)區(qū)pcpu分配空間,用于多處理器,此處不考慮
err = percpu_modalloc(mod, info);
if (err)
goto unlink_mod;

//模塊計數(shù)加1,并初始化模塊鏈表
err = module_unload_init(mod);
if (err)
goto unlink_mod;

//找到其余節(jié)區(qū)地址,初始化module對象相關(guān)指針
find_module_sections(mod, info);

//檢查license和version
err = check_module_license_and_versions(mod);
if (err)
goto free_unload;

//根據(jù).modinfo段設(shè)置模塊信息
setup_modinfo(mod, info);

//根據(jù)前邊設(shè)置的模塊在內(nèi)核的起始地址,節(jié)區(qū)的起始地址已經(jīng)更新,但是節(jié)區(qū)中符號的地址還未進行更新,這里根據(jù)節(jié)區(qū)的內(nèi)存地址更新符號地址
err = simplify_symbols(mod, info);
if (err < 0)
goto free_modinfo;

//對模塊中的重定位節(jié)區(qū)做重定位操作
err = apply_relocations(mod, info);
if (err < 0)
goto free_modinfo;

err = post_relocation(mod, info);
if (err < 0)
goto free_modinfo;

//Flush the instruction cache,no care
flush_module_icache(mod);

//把可選參數(shù)從用戶空間復(fù)制到內(nèi)核空間
mod->args = strndup_user(uargs, ~0UL >> 1);
if (IS_ERR(mod->args)) {
err = PTR_ERR(mod->args);
goto free_arch_cleanup;
}

//處理用于debug節(jié)區(qū)
dynamic_debug_setup(info->debug, info->num_debug);

//確認是否有重定義符號,并且設(shè)置模塊狀態(tài)為正在運行
err = complete_formation(mod, info);
if (err)
goto ddebug_cleanup;

/* Module is ready to execute: parsing args may do that. */
//分析參數(shù)是否有效
err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,-32768, 32767, unknown_module_param_cb);
if (err < 0)
goto bug_cleanup;

//sysfs文件系統(tǒng)相關(guān),在sysfs中創(chuàng)建模塊相應(yīng)的項
err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
if (err < 0)
goto bug_cleanup;

//釋放臨時模塊鏡像和其他臨時輔助內(nèi)存區(qū)
free_copy(info);

/* */
trace_module_load(mod);

//調(diào)用do_init_module開始運行模塊
return do_init_module(mod);

bug_cleanup:
/* module_bug_cleanup needs module_mutex protection */
mutex_lock(&module_mutex);
module_bug_cleanup(mod);
mutex_unlock(&module_mutex);
ddebug_cleanup:
dynamic_debug_remove(info->debug);
synchronize_sched();
kfree(mod->args);
free_arch_cleanup:
module_arch_cleanup(mod);
free_modinfo:
free_modinfo(mod);
free_unload:
module_unload_free(mod);
unlink_mod:
mutex_lock(&module_mutex);
/* Unlink carefully: kallsyms could be walking list. */
list_del_rcu(&mod->list);
wake_up_all(&module_wq);
mutex_unlock(&module_mutex);
free_module:
module_deallocate(mod, info);
free_copy:
free_copy(info);
return err;
}

static int module_sig_check(struct load_info *info)
{
//#define MODULE_SIG_STRING "~Module signature appended~\n"
int err = -ENOKEY;
const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
const void *mod = info->hdr;
//elf文件長度是否大于簽名字符串長度,并且比較該elf格式的模塊文件是否在文件末尾有signature string。若有的話則將該文件長度減去該字符串長度,并確認該簽名是module類型。
if (info->len > markerlen && memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0)
{
info->len -= markerlen;//模塊長度減去簽名字符串的長度
err = mod_verify_sig(mod, &info->len);//驗證模塊簽名
}
if (!err) {
info->sig_ok = true;
return 0;
}

/* Not having a signature is only an error if we're strict. */
if (err < 0 && fips_enabled)
panic("Module verification failed with error %d in FIPS mode\n",err);
if (err == -ENOKEY && !sig_enforce)
err = 0;
return err;
}

struct module_signature {
u8 algo; /* Public-key crypto algorithm [enum pkey_algo] */
u8 hash; /* Digest algorithm [enum pkey_hash_algo] */
u8 id_type; /* Key identifier type [enum pkey_id_type] */
u8 signer_len; /* Length of signer's name */
u8 key_id_len; /* Length of key identifier */
u8 __pad[3];
__be32 sig_len; /* Length of signature data */
};

int mod_verify_sig(const void *mod, unsigned long *_modlen)
{
//mod是模塊文件起始地址,_modlen是模塊文件的大小(去掉了最后的簽名字符串長度)
struct public_key_signature *pks;
struct module_signature ms;
struct key *key;
const void *sig;
size_t modlen = *_modlen, sig_len;
int ret;

pr_devel("==>%s(,%zu)\n", __func__, modlen);

//檢查長度
if (modlen <= sizeof(ms))
return -EBADMSG;

//如果.ko文件最后有簽名字符串的話,則簽名字符串之上有一個module_signature結(jié)構(gòu),讀出這個結(jié)構(gòu)的內(nèi)容
memcpy(&ms, mod + (modlen - sizeof(ms)), sizeof(ms));
modlen -= sizeof(ms);//相應(yīng)修改模塊文件長度

sig_len = be32_to_cpu(ms.sig_len);//獲得簽名數(shù)據(jù)長度
if (sig_len >= modlen)
return -EBADMSG;
modlen -= sig_len;//模塊文件長度再減去簽名數(shù)據(jù)長度

if ((size_t)ms.signer_len + ms.key_id_len >= modlen)
return -EBADMSG;
//模塊文件長度再減去簽名人名字長度和key長度
modlen -= (size_t)ms.signer_len + ms.key_id_len;

*_modlen = modlen;//去掉簽名驗證的信息后返回模塊真實size
//文件指針移到簽名信息處
sig = mod + modlen;

/* For the moment, only support RSA and X.509 identifiers */
if (ms.algo != PKEY_ALGO_RSA || ms.id_type != PKEY_ID_X509)
return -ENOPKG;

if (ms.hash >= PKEY_HASH__LAST || !pkey_hash_algo[ms.hash])
return -ENOPKG;

//將signer name和key identifier從文件sig處讀出來,返回key
key = request_asymmetric_key(sig, ms.signer_len,sig + ms.signer_len, ms.key_id_len);
if (IS_ERR(key))
return PTR_ERR(key);

//Digest the module contents.
pks = mod_make_digest(ms.hash, mod, modlen);
if (IS_ERR(pks)) {
ret = PTR_ERR(pks);
goto error_put_key;
}

//Extract an MPI array from the signature data. This represents the actual signature. Each raw MPI is prefaced by a BE 2-byte value indicating the size of the MPI in bytes.RSA signatures only have one MPI, so currently we only read one.
ret = mod_extract_mpi_array(pks, sig + ms.signer_len + ms.key_id_len,sig_len);
if (ret < 0)
goto error_free_pks;

//Initiate the use of an asymmetric key to verify a signature
//key: The asymmetric key to verify against
//sig: The signature to check
ret = verify_signature(key, pks);
pr_devel("verify_signature() = %d\n", ret);

error_free_pks:
mpi_free(pks->rsa.s);
kfree(pks);
error_put_key:
key_put(key);
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}

static int elf_header_check(struct load_info *info)
{
if (info->len < sizeof(*(info->hdr)))
return -ENOEXEC;

//檢查elf文件頭,以及文件類型(.ko文件必是可重定位文件),架構(gòu)以及節(jié)區(qū)大小是否設(shè)置正確
if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0|| info->hdr->e_type != ET_REL
|| !elf_check_arch(info->hdr)|| info->hdr->e_shentsize != sizeof(Elf_Shdr))
return -ENOEXEC;

//檢查節(jié)區(qū)的偏移地址
if (info->hdr->e_shoff >= info->len
|| (info->hdr->e_shnum * sizeof(Elf_Shdr) >info->len - info->hdr->e_shoff))
return -ENOEXEC;

return 0;
}

static struct module *layout_and_allocate(struct load_info *info, int flags)
{
struct module *mod;
int err;

//設(shè)置info結(jié)構(gòu),并檢查module_layout的crc值,并返回一個存儲在.gnu.linkonce.this_module節(jié)區(qū)中的struct module結(jié)構(gòu),該module的起始地址正是.gnu.linkonce.this_module節(jié)區(qū)起始地址
mod = setup_load_info(info, flags);
if (IS_ERR(mod))
return mod;

//檢查.modinfo節(jié)區(qū)中的信息,包括version magic
err = check_modinfo(mod, info, flags);
if (err)
return ERR_PTR(err);

//什么也不做,返回0
err = module_frob_arch_sections(info->hdr, info->sechdrs,info->secstrings, mod);
if (err < 0)
return ERR_PTR(err);

//移除SHF_ALLOC標志
info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;

//只有節(jié)區(qū)頭部設(shè)置了SHF_ALLOC標志,才最終存于內(nèi)存中,且內(nèi)存分為init部分和core部分
layout_sections(mod, info);

//為symbol section以及跟它相關(guān)的string table布置位置,更新相關(guān)size
layout_symtab(mod, info);

//為mod指向的臨時鏡像中標記了SHF_ALLOC節(jié)區(qū)分配內(nèi)存,并從臨時鏡像復(fù)制到最終的位置,并且修改節(jié)區(qū)的起始地址
err = move_module(mod, info);
if (err)
return ERR_PTR(err);

//因為前邊已將模塊靠誒到最終的內(nèi)存位置,所以各個節(jié)區(qū)的起始地址已經(jīng)改變,之前mod指向的地址已經(jīng)無效,所以重新將新的“.gnu.linkonce.this_module”節(jié)區(qū)的起始地址(指向一個module對象)賦給mod對象
mod = (void *)info->sechdrs[info->index.mod].sh_addr;

//掃描檢查內(nèi)存泄露???
kmemleak_load_module(mod, info);
return mod;
}

static struct module *setup_load_info(struct load_info *info)
{
unsigned int i;
int err;
struct module *mod;

//找到節(jié)區(qū)頭部表開始地址
info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
//找到節(jié)區(qū)名稱的字符串節(jié)區(qū)的起始地址
info->secstrings = (void *)info->hdr + info->sechdrs[info->hdr->e_shstrndx].sh_offset;

//根據(jù)elf格式的.ko文件拷貝到內(nèi)核空間內(nèi)存中的虛擬地址為基地址(即(void *)info->hdr),重寫節(jié)區(qū)在內(nèi)存映像中節(jié)區(qū)第一個字節(jié)應(yīng)處的位置
err = rewrite_section_headers(info);
if (err)
return ERR_PTR(err);

/*遍歷所有節(jié)區(qū)找到符號表(類型為 SHT_SYMTAB 的唯一段)和相關(guān)的符號字符串表的位置,
前者的 sh_link 即為后者的段索引*/
for (i = 1; i < info->hdr->e_shnum; i++) {
if (info->sechdrs[i].sh_type == SHT_SYMTAB){
//找到符號表節(jié)區(qū).symtab索引
info->index.sym = i;
//找到符號表字符串節(jié)區(qū)索引,即.strtab節(jié)區(qū)
info->index.str = info->sechdrs[i].sh_link;
//字符串節(jié)區(qū)內(nèi)容開始地址
info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset;
break;
}
}

//在.gnu.linkonce.this_module節(jié)區(qū)中,有一個struct module的實例,此結(jié)構(gòu)大部分成員是NULL,編譯器只是初始化了name,init,exit和arch等幾個成員。
info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
if (!info->index.mod) {
printk(KERN_WARNING "No module found in object\n");
return ERR_PTR(-ENOEXEC);
}

//mod指向 struct module的實例,該實例中提供了模塊的名稱和指向初始化以及清理函數(shù)的指針,但其他成員仍然初始化為 NULL 或 0. 將該模塊的地址暫時設(shè)為臨時映像中節(jié)區(qū)給出的地址,后邊會對module的地址再做出修正.
mod = (void *)info->sechdrs[info->index.mod].sh_addr;

if (info->index.sym == 0) {
printk(KERN_WARNING "%s: module has no symbols (stripped?)\n", mod->name);
return ERR_PTR(-ENOEXEC);
}

//查找".data..percpu"節(jié)區(qū)索引號
info->index.pcpu = find_pcpusec(info);

//檢查模塊中“module_layout”符號的crc值,若失敗則打印著名模塊加載錯誤“Exec format error ”
if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
return ERR_PTR(-ENOEXEC);

return mod;
}

static int rewrite_section_headers(struct load_info *info, int flags)
{
unsigned int i;
info->sechdrs[0].sh_addr = 0;//節(jié)區(qū)0地址是0,表示此節(jié)區(qū)不出現(xiàn)在內(nèi)存映像中
for (i = 1; i < info->hdr->e_shnum; i++) {
Elf_Shdr *shdr = &info->sechdrs[i];
//判斷節(jié)區(qū)size
if (shdr->sh_type != SHT_NOBITS && info->len < shdr->sh_offset + shdr->sh_size) {
printk(KERN_ERR "Module len %lu truncated\n",info->len);
return -ENOEXEC;
}

//在elf文件拷貝到內(nèi)核空間的基地址基礎(chǔ)上重新設(shè)置節(jié)區(qū)在內(nèi)核空間的起始地址,shdr->sh_addr表示節(jié)區(qū)在內(nèi)存映像中節(jié)區(qū)第一個字節(jié)應(yīng)處的位置
shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
#ifndef CONFIG_MODULE_UNLOAD
/* Don't load .exit sections */
if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
#endif
}

//找到__versions和.modinfo節(jié)區(qū),并記錄節(jié)區(qū)索引
if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
info->index.vers = 0;
else
info->index.vers = find_sec(info, "__versions");
info->index.info = find_sec(info, ".modinfo");
//這兩個節(jié)區(qū)清楚SHF_ALLOC標志,表示此節(jié)區(qū)在進程執(zhí)行過程中不占用內(nèi)存
info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
return 0;
}

static inline int check_modstruct_version(Elf_Shdr *sechdrs,unsigned int versindex,struct module *mod)
{
const unsigned long *crc;

//查找系統(tǒng)內(nèi)核中“module_layout”符號,并返回該符號的crc值
if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,&crc, true, false))
BUG();

//系統(tǒng)中“module_layout”符號的crc值與模塊中的“module_layout”符號crc值是否一致
return check_version(sechdrs, versindex,VMLINUX_SYMBOL_STR(module_layout), mod, crc,NULL);
}

//查找符號使用的結(jié)構(gòu)體
struct find_symbol_arg {
//輸入
const char *name;//要查找的符號名
bool gplok;//如果為真,則表示內(nèi)核模塊支持GPL許可
bool warn;//警告信息標志

//輸出
struct module *owner;//該符號所屬的模塊
const unsigned long *crc;//該符號的crc值
const struct kernel_symbol *sym;//符號結(jié)構(gòu)
};

const struct kernel_symbol *find_symbol(const char *name,struct module **owner,const unsigned long **crc,bool gplok,bool warn)
{
//設(shè)置查找符號參數(shù)結(jié)構(gòu)
struct find_symbol_arg fsa;
fsa.name = name;
fsa.gplok = gplok;
fsa.warn = warn;

//查找符號,填寫符號參數(shù)結(jié)構(gòu)的輸出部分
if (each_symbol_section(find_symbol_in_section, &fsa)) {
if (owner)//NULL,下邊不需賦值
*owner = fsa.owner;

if (crc)//得到該符號的crc值
*crc = fsa.crc;

//返回以name命名的內(nèi)核符號結(jié)構(gòu)
return fsa.sym;
}

//沒有找到內(nèi)核符號,返回NULL
pr_debug("Failed to find symbol %s\n", name);
return NULL;
}

bool each_symbol_section(bool (*fn)(const struct symsearch *arr,struct module *owner,void *data),void *data)
{
struct module *mod;
//第一部分在內(nèi)核導(dǎo)出的符號表中查找對應(yīng)的符號,找到就返回對應(yīng)的符號信息,否則,再進行第二部分查找.
/*struct symsearch {
const struct kernel_symbol *start, *stop;
const unsigned long *crcs;
enum {
NOT_GPL_ONLY,
GPL_ONLY,
WILL_BE_GPL_ONLY,
} licence;
bool unused;
};
*/
static const struct symsearch arr[] = {
{ __start___ksymtab, __stop___ksymtab,
__start___kcrctab,NOT_GPL_ONLY, false },
{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
__start___kcrctab_gpl,GPL_ONLY, false },
{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
__start___kcrctab_gpl_future,WILL_BE_GPL_ONLY, false },
#ifdef CONFIG_UNUSED_SYMBOLS
{ __start___ksymtab_unused, __stop___ksymtab_unused,
__start___kcrctab_unused,NOT_GPL_ONLY, true },
{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
__start___kcrctab_unused_gpl,GPL_ONLY, true },
#endif
};

if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
return true;

//在內(nèi)核導(dǎo)出的符號表中沒有找到對應(yīng)的符號,則在系統(tǒng)已加載的模塊中查找
list_for_each_entry_rcu(mod, &modules, list) {
struct symsearch arr[] = {
{ mod->syms, mod->syms + mod->num_syms,
mod->crcs,NOT_GPL_ONLY, false },
{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
mod->gpl_crcs,GPL_ONLY, false },
{ mod->gpl_future_syms,mod->gpl_future_syms + mod->num_gpl_future_syms,
mod->gpl_future_crcs,WILL_BE_GPL_ONLY, false },
#ifdef CONFIG_UNUSED_SYMBOLS
{ mod->unused_syms,mod->unused_syms + mod->num_unused_syms,
mod->unused_crcs, NOT_GPL_ONLY, true },
{ mod->unused_gpl_syms,mod->unused_gpl_syms + mod->num_unused_gpl_syms,
mod->unused_gpl_crcs,GPL_ONLY, true },
#endif
};

//若模塊狀態(tài)為MODULE_STATE_UNFORMED,則此模塊的符號不可用
if (mod->state == MODULE_STATE_UNFORMED)
continue;

if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
return true;
}
return false;
}

static bool each_symbol_in_section(const struct symsearch *arr,unsigned int arrsize,struct module *owner,bool (*fn)(const struct symsearch *syms,struct module *owner,void *data),void *data)
{
unsigned int j;

//調(diào)用find_symbol_in_section()對每個數(shù)組指定的符號地址范圍進行查找
for (j = 0; j < arrsize; j++) {
if (fn(&arr[j], owner, data))//調(diào)用find_symbol_in_section()
return true;
}
return false;
}

static bool find_symbol_in_section(const struct symsearch *syms,struct module *owner,void *data)
{
struct find_symbol_arg *fsa = data;
struct kernel_symbol *sym;

//在范圍內(nèi)查找符號名為fsa->name的內(nèi)核符號
sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,sizeof(struct kernel_symbol), cmp_name);

//若找到內(nèi)核符號,則對其進行check是否有效
if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
return true;

return false;
}

void *bsearch(const void *key, const void *base, size_t num, size_t size,int (*cmp)(const void *key, const void *elt))
{
size_t start = 0, end = num;
int result;

while (start < end) {//折半查找
size_t mid = start + (end - start) / 2;

//調(diào)用cmp_name()函數(shù)比較符號名是否一致
result = cmp(key, base + mid * size);
if (result < 0)
end = mid;
else if (result > 0)
start = mid + 1;
else
return (void *)base + mid * size;
}
return NULL;
}

static int cmp_name(const void *va, const void *vb)
{
const char *a;
const struct kernel_symbol *b;
a = va; b = vb;
return strcmp(a, b->name);
}

static bool check_symbol(const struct symsearch *syms,struct module *owner,unsigned int symnum, void *data)
{
struct find_symbol_arg *fsa = data;

if (!fsa->gplok) {//若未設(shè)置gplok,則必須為GPL許可
if (syms->licence == GPL_ONLY)
return false;
if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
printk(KERN_WARNING "Symbol %s is being used "
"by a non-GPL module, which will not "
"be allowed in the future\n", fsa->name);
}
}

#ifdef CONFIG_UNUSED_SYMBOLS
if (syms->unused && fsa->warn) {
printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
"however this module is using it.\n", fsa->name);
printk(KERN_WARNING"This symbol will go away in the future.\n");
printk(KERN_WARNING
"Please evalute if this is the right api to use and if "
"it really is, submit a report the linux kernel "
"mailinglist together with submitting your code for "
"inclusion.\n");
}
#endif

fsa->owner = owner;//符號所屬模塊
//#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
fsa->crc = symversion(syms->crcs, symnum);//符號的crc值
fsa->sym = &syms->start[symnum];//返回的符號結(jié)構(gòu)
return true;
}

static int check_version(Elf_Shdr *sechdrs,unsigned int versindex,const char *symname,struct module *mod, const unsigned long *crc,const struct module *crc_owner)
{
unsigned int i, num_versions;
struct modversion_info *versions;

//若系統(tǒng)中的該符號crc值為0,則直接返回1完事
if (!crc)
return 1;

//若該模塊的elf格式文件中沒有__versions節(jié)區(qū),則嘗試強制加載模塊
//但是try_to_force_load()函數(shù)的實現(xiàn)依賴于CONFIG_MODULE_FORCE_LOAD宏是否定義。而該宏默認是沒有定義的,所以這里會返回失敗,看來內(nèi)核并不推薦強制加載模塊。
if (versindex == 0)
return try_to_force_load(mod, symname) == 0;

//找到模塊“__versions”節(jié)區(qū)在內(nèi)存映像中的起始地址。相當于節(jié)區(qū)的contents內(nèi)容
versions = (void *) sechdrs[versindex].sh_addr;
num_versions = sechdrs[versindex].sh_size/ sizeof(struct modversion_info);
for (i = 0; i < num_versions; i++) {
if (strcmp(versions[i].name, symname) != 0)//在此節(jié)區(qū)中找到要比較的符號
continue;

//比較該模塊中的符號crc值和現(xiàn)在系統(tǒng)上的內(nèi)核符號的crc值是否一致
if (versions[i].crc == maybe_relocated(*crc, crc_owner))
return 1;
pr_debug("Found checksum %lX vs module %lX\n",maybe_relocated(*crc, crc_owner), versions[i].crc);
goto bad_version;
}

//若在“__versions”節(jié)區(qū)沒有找到要比較的符號,則會給出加載模塊時常見錯誤:“no symbol version for”
printk(KERN_WARNING "%s: no symbol version for %s\n",mod->name, symname);
return 0;
bad_version:
//如果比較符號的額crc值不一致,則會給出加載模塊時常見錯誤“disagrees about version of symbol”
printk("%s: disagrees about version of symbol %s\n",mod->name, symname);
return 0;
}

static int try_to_force_load(struct module *mod, const char *reason)
{
#ifdef CONFIG_MODULE_FORCE_LOAD
//若選項CONFIG_MODULE_FORCE_LOAD打開,則檢查tainted_mask是否設(shè)置了TAINT_FORCED_MODULE標志,若沒有給出警告信息
if (!test_taint(TAINT_FORCED_MODULE))
printk(KERN_WARNING "%s: %s: kernel tainted.\n",mod->name, reason);

//設(shè)置mod->taints和tainted_mask的TAINT_FORCED_MODULE標志,表示強制加載該模塊,并返回正確值0
add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
return 0;
#else
//若選項CONFIG_MODULE_FORCE_LOAD未打開,則直接返回錯誤
return -ENOEXEC;
#endif
}

static int check_modinfo(struct module *mod, struct load_info *info, int flags)
{
//從模塊.modinfo節(jié)區(qū)中獲得version magic
const char *modmagic = get_modinfo(info, "vermagic");
int err;
if (flags & MODULE_INIT_IGNORE_VERMAGIC)
modmagic = NULL;

//若version magic為0,則嘗試強制加載
if (!modmagic) {
err = try_to_force_load(mod, "bad vermagic");
if (err)
return err;
}
//與內(nèi)核的vermagic是否一致,若不一致,給出著名錯誤:“version magic ... should be ...”,返回錯誤碼
else if (!same_magic(modmagic, vermagic, info->index.vers)) {
printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",mod->name, modmagic, vermagic);
return -ENOEXEC;
}

//返回.modinfo節(jié)區(qū)中intree=“...”的內(nèi)容,若不存在設(shè)置標志TAINT_OOT_MODULE
if (!get_modinfo(info, "intree"))
add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);

//返回.modinfo節(jié)區(qū)中staging=“...”的內(nèi)容,存在設(shè)置標志TAINT_CRAP
if (get_modinfo(info, "staging")) {
add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
printk(KERN_WARNING "%s: module is from the staging directory,"" the quality is unknown, you have been warned.\n",mod->name);
}

//取出.modinfo節(jié)區(qū)的license字段指定的license類型,并對此license檢查
set_license(mod, get_modinfo(info, "license"));
return 0;
}

static char *get_modinfo(struct load_info *info, const char *tag)
{
char *p;
unsigned int taglen = strlen(tag);
//找到模塊.modinfo節(jié)區(qū)
Elf_Shdr *infosec = &info->sechdrs[info->index.info];
unsigned long size = infosec->sh_size;

//查找.modinfo節(jié)區(qū)中的內(nèi)容,返回"*tag"字符串=后邊的內(nèi)容
for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size))
{
if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
return p + taglen + 1;
}
return NULL;
}

static inline int same_magic(const char *amagic, const char *bmagic, bool has_crcs)
{
//從字符串中依次取出以“ ”結(jié)尾的字符串段進行比較
if (has_crcs) {
amagic += strcspn(amagic, " ");
bmagic += strcspn(bmagic, " ");
}
return strcmp(amagic, bmagic) == 0;
}

static void set_license(struct module *mod, const char *license)
{
if (!license)
license = "unspecified";

//比較模塊的license類型是否是內(nèi)核指定的GPL類型,若不是則設(shè)置TAINT_PROPRIETARY_MODULE標志
if (!license_is_gpl_compatible(license)) {
if (!test_taint(TAINT_PROPRIETARY_MODULE))
printk(KERN_WARNING "%s: module license '%s' taints kernel.\n", mod->name, license);
add_taint_module(mod, TAINT_PROPRIETARY_MODULE,LOCKDEP_NOW_UNRELIABLE);
}
}

static inline int license_is_gpl_compatible(const char *license)
{
return (strcmp(license, "GPL") == 0
|| strcmp(license, "GPL v2") == 0
|| strcmp(license, "GPL and additional rights") == 0
|| strcmp(license, "Dual BSD/GPL") == 0
|| strcmp(license, "Dual MIT/GPL") == 0
|| strcmp(license, "Dual MPL/GPL") == 0);
}

static void layout_sections(struct module *mod, struct load_info *info)
{
//注意:節(jié)的復(fù)制是按照原來ELF的順序,將所有標志包含SHF_ALLOC的節(jié)都復(fù)制到相應(yīng)的分配空間(module_core/module_init),例外的情況是SHT_NOBITS,也就是BSS段,文件中沒有分配空間,因此不需要復(fù)制.

//sections函數(shù)首先為標記了SHF_ALLOC的section定義了四種類型:code, read-only data,read-write data和small data. 帶有SHF_ALLOC的section必定屬于四類中的一類。函數(shù)遍歷section header table中的所有項,將section name不是以".init"開始的section劃歸為COREsection. 以".init"開始的section劃歸為INIT section.
static unsigned long const masks[][2] = {
{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },//code
{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },//read only data
{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },//read-write data
{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }//small data
};
unsigned int m, i;

//遍歷所有節(jié)區(qū)初始化sh_entsize成員
//某些節(jié)區(qū)中包含固定大小的項目,如符號表。對于這類節(jié)區(qū),此成員sh_entsize給出每個表項的長度字節(jié)數(shù)。如果節(jié)區(qū)中并不包含固定長度表項的表格,此成員取值為 0。
for (i = 0; i < info->hdr->e_shnum; i++)
info->sechdrs[i].sh_entsize = ~0UL;

//劃分為兩部分: CORE INIT
//第1部分CORE:查找標志中含有SHF_ALLOC的section
for (m = 0; m < ARRAY_SIZE(masks); ++m) {
for (i = 0; i < info->hdr->e_shnum; ++i) {
Elf_Shdr *s = &info->sechdrs[i];
//找到節(jié)區(qū)名
const char *sname = info->secstrings + s->sh_name;
//含有SHF_ALLOC的section需要加載到最終的內(nèi)存
//含有SHF_ALLOC的section并且不以init開頭的節(jié)區(qū)劃分到CORE部分
if ((s->sh_flags & masks[m][0]) != masks[m][0]
|| (s->sh_flags & masks[m][1])
|| s->sh_entsize != ~0UL || strstarts(sname, ".init"))
continue;

//把由于對齊產(chǎn)生的偏移保存到節(jié)區(qū)的sh_entsize字段,后邊mod通過sh_entsize就可以找到該節(jié)區(qū)存儲的位置。并把符合要求的節(jié)區(qū)大小加到mod->core_size
s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
}

//由于我們節(jié)的復(fù)制是按順序的,而.text節(jié)是第一個節(jié),因此mod->module_core實際上指向的就是.text段。而mod->core_text_size中也包含了.text節(jié)的大小.
switch (m) {
case 0: //可執(zhí)行的段,代碼段都一樣
mod->core_size = debug_align(mod->core_size);
mod->core_text_size = mod->core_size;
break;
case 1: //只讀段
mod->core_size = debug_align(mod->core_size);
mod->core_ro_size = mod->core_size;
break;
case 3: //所有段
mod->core_size = debug_align(mod->core_size);
break;
}
}

//第2部分INIT
for (m = 0; m < ARRAY_SIZE(masks); ++m) {
for (i = 0; i < info->hdr->e_shnum; ++i) {
Elf_Shdr *s = &info->sechdrs[i];
const char *sname = info->secstrings + s->sh_name;
//含有SHF_ALLOC的section需要加載到最終的內(nèi)存
//含有SHF_ALLOC的section并且以init開頭的劃分到INIT部分
if ((s->sh_flags & masks[m][0]) != masks[m][0]
|| (s->sh_flags & masks[m][1])
|| s->sh_entsize != ~0UL
|| !strstarts(sname, ".init"))
continue;

//把由于對齊產(chǎn)生的偏移保存到節(jié)區(qū)的sh_entsize字段,并把符合要求的節(jié)區(qū)大小加到 mod->init_size
s->sh_entsize = (get_offset(mod, &mod->init_size, s, i) | INIT_OFFSET_MASK);
}

switch (m) {
case 0://代碼段
mod->init_size = debug_align(mod->init_size);
mod->init_text_size = mod->init_size;
break;
case 1://只讀段
mod->init_size = debug_align(mod->init_size);
mod->init_ro_size = mod->init_size;
break;
case 3://所有段
mod->init_size = debug_align(mod->init_size);
break;
}
}
}

static long get_offset(struct module *mod, unsigned int *size,Elf_Shdr *sechdr, unsigned int section)
{
//#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
//#define __ALIGN_KERNEL(x, a) __ALIGN_KERNEL_MASK(x, (typeof(x))(a) - 1)
//#define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask))
long ret;
*size += arch_mod_section_prepend(mod, section);//空函數(shù),返回0
ret = ALIGN(*size, sechdr->sh_addralign ?: 1);//返回*size字節(jié)對齊后的值
*size = ret + sechdr->sh_size;//把當前節(jié)區(qū)的size也加到*size上
return ret;
}

static void layout_symtab(struct module *mod, struct load_info *info)
{
Elf_Shdr *symsect = info->sechdrs + info->index.sym;//找到符號表節(jié)區(qū)頭部
Elf_Shdr *strsect = info->sechdrs + info->index.str;//找到字符串表節(jié)區(qū)頭部
const Elf_Sym *src;
unsigned int i, nsrc, ndst, strtab_size = 0;

//符號節(jié)區(qū)設(shè)置SHF_ALLOC標志,表示在內(nèi)存占空間
symsect->sh_flags |= SHF_ALLOC;

//設(shè)置符號表節(jié)區(qū)每個表項的長度字節(jié)數(shù),并把符號表的size加到mod->init_size
symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,info->index.sym) | INIT_OFFSET_MASK;

pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
src = (void *)info->hdr + symsect->sh_offset;//符號表節(jié)區(qū)內(nèi)容起始地址
nsrc = symsect->sh_size / sizeof(*src);//符號表項個數(shù)

//計算該模塊包含的所有符號名長度所占的空間
for (ndst = i = 0; i < nsrc; i++) {
//is_core_symbol檢查符號是否有效且屬于SHF_ALLOC
if (i == 0 || is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
strtab_size += strlen(&info->strtab[src[i].st_name])+1;
ndst++;
}
}

//將mod->core_size按符號節(jié)區(qū)對齊約束對齊后得到的值返回給info->symoffs
info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
//將符號表節(jié)區(qū)內(nèi)容(即ndst個符號表項)添加到core部分的后邊,并重新設(shè)置core部分的size。
info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
//core部分再把符號名的字符串所占空間加上
mod->core_size += strtab_size;
//注意:這里只是為符號項和符號的名稱長度分配了空間,還并沒有將內(nèi)容拷貝過來,在下邊的add_kallsyms函數(shù)中進行拷貝!!!

//把字符串節(jié)區(qū)加到模塊的init部分
strsect->sh_flags |= SHF_ALLOC;//字符串節(jié)區(qū)也設(shè)置上需要內(nèi)存空間標志
strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,info->index.str) | INIT_OFFSET_MASK;
pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
}


static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,unsigned int shnum)
{
const Elf_Shdr *sec;
//未定義的符號,或者符號索引號大于符號總個數(shù),或者符號名為空則直接返回0
if (src->st_shndx == SHN_UNDEF|| src->st_shndx >= shnum|| !src->st_name)
return false;

//找到符號所在的節(jié)區(qū),若該節(jié)區(qū)不占內(nèi)存,則也返回0
sec = sechdrs + src->st_shndx;
if (!(sec->sh_flags & SHF_ALLOC)
#ifndef CONFIG_KALLSYMS_ALL
|| !(sec->sh_flags & SHF_EXECINSTR)
#endif
|| (sec->sh_entsize & INIT_OFFSET_MASK))
return false;
return true;
}

static int move_module(struct module *mod, struct load_info *info)
{
int i;
void *ptr;

//在內(nèi)核空間為模塊的core部分分配空間,返回地址
ptr = module_alloc_update_bounds(mod->core_size);

//但是要掃描這個指針所分配的內(nèi)存的內(nèi)容。分配數(shù)據(jù)結(jié)構(gòu)那么該結(jié)構(gòu)本身不打印,但是會掃描結(jié)構(gòu)內(nèi)部的成員變量,是否引用其他指針。
kmemleak_not_leak(ptr);
if (!ptr)
return -ENOMEM;
memset(ptr, 0, mod->core_size);
mod->module_core = ptr;//地址賦給module_core成員

//在內(nèi)核空間為init section分配內(nèi)存,初始化后存儲在module對象的module_init成員中
if (mod->init_size) {
//為模塊的init部分分配空間,返回地址
ptr = module_alloc_update_bounds(mod->init_size);

kmemleak_ignore(ptr);
if (!ptr) {
module_free(mod, mod->module_core);
return -ENOMEM;
}
memset(ptr, 0, mod->init_size);
mod->module_init = ptr;//地址賦給module_init
} else
mod->module_init = NULL;
/* Transfer each section which specifies SHF_ALLOC */

pr_debug("final section addresses:\n");
//遍歷所有節(jié)區(qū),拷貝需要占用內(nèi)存(標志為SHF_ALLOC的節(jié)區(qū))的段到init section 或core section,并且調(diào)整各個節(jié)區(qū)的運行時地址
for (i = 0; i < info->hdr->e_shnum; i++) {
void *dest;
Elf_Shdr *shdr = &info->sechdrs[i];
if (!(shdr->sh_flags & SHF_ALLOC))
continue;

//如果節(jié)區(qū)首部的sh_entsize的最高位設(shè)置的話,表示該段屬于init section,則從module_init開始的內(nèi)存中獲取當前段應(yīng)該存儲的地址,否則從module_core開始的內(nèi)存中獲取當前段應(yīng)該存儲的地址。
if (shdr->sh_entsize & INIT_OFFSET_MASK)
dest = mod->module_init + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
else
dest = mod->module_core + shdr->sh_entsize;

//將當前節(jié)區(qū)的內(nèi)容從ELF文件頭拷貝到指定的段(init section或core section)中
if (shdr->sh_type != SHT_NOBITS)
memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);

//更改節(jié)區(qū)的運行時地址,sh_addr原先存儲的地址是相對于ELF文件頭的地址,現(xiàn)在是在內(nèi)核空間分配新的內(nèi)存空間后,節(jié)區(qū)新的運行地址(即節(jié)區(qū)內(nèi)容的起始地址)。
shdr->sh_addr = (unsigned long)dest;
pr_debug("\t0x%lx %s\n",(long)shdr->sh_addr, info->secstrings + shdr->sh_name);
}
return 0;
}

static void *module_alloc_update_bounds(unsigned long size)
{
//在內(nèi)核空間中分配size大小的空間,返回起始地址
void *ret = module_alloc(size);

//更新模塊邊界值
if (ret) {
mutex_lock(&module_mutex);
if ((unsigned long)ret < module_addr_min)
module_addr_min = (unsigned long)ret;
if ((unsigned long)ret + size > module_addr_max)
module_addr_max = (unsigned long)ret + size;
mutex_unlock(&module_mutex);
}
return ret;
}

static int add_unformed_module(struct module *mod)
{
int err;
struct module *old;
mod->state = MODULE_STATE_UNFORMED;
again:
mutex_lock(&module_mutex);
//在內(nèi)核中查找此模塊是否已加入鏈表
old = find_module_all(mod->name, strlen(mod->name), true);
if (old != NULL) {
if (old->state == MODULE_STATE_COMING|| old->state == MODULE_STATE_UNFORMED) {
/* Wait in case it fails to load. */
mutex_unlock(&module_mutex);
err = wait_event_interruptible(module_wq,finished_loading(mod->name));
if (err)
goto out_unlocked;
goto again;
}
err = -EEXIST;
goto out;
}
//若還沒有,則掛入全局模塊鏈表modules
list_add_rcu(&mod->list, &modules);
err = 0;
out:
mutex_unlock(&module_mutex);
out_unlocked:
return err;
}

static int module_unload_init(struct module *mod)
{
//初始化多處理下用于引用計數(shù)的refptr成員
mod->refptr = alloc_percpu(struct module_ref);
if (!mod->refptr)
return -ENOMEM;

//初始化module對象的鏈表
INIT_LIST_HEAD(&mod->source_list);
INIT_LIST_HEAD(&mod->target_list);
//模塊計數(shù)加1
__this_cpu_write(mod->refptr->incs, 1);
/* Backwards compatibility macros put refcount during init. */
mod->waiter = current;

return 0;
}

static void find_module_sections(struct module *mod, struct load_info *info)
{
mod->kp = section_objs(info, "__param",sizeof(*mod->kp), &mod->num_kp);
mod->syms = section_objs(info, "__ksymtab",sizeof(*mod->syms), &mod->num_syms);
mod->crcs = section_addr(info, "__kcrctab");
mod->gpl_syms = section_objs(info, "__ksymtab_gpl",sizeof(*mod->gpl_syms),&mod->num_gpl_syms);
mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
mod->gpl_future_syms = section_objs(info,"__ksymtab_gpl_future",
sizeof(*mod->gpl_future_syms),&mod->num_gpl_future_syms);
mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");

#ifdef CONFIG_UNUSED_SYMBOLS
mod->unused_syms = section_objs(info, "__ksymtab_unused",sizeof(*mod->unused_syms),&mod->num_unused_syms);
mod->unused_crcs = section_addr(info, "__kcrctab_unused");
mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",sizeof(*mod->unused_gpl_syms),&mod->num_unused_gpl_syms);
mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
#endif
#ifdef CONFIG_CONSTRUCTORS
mod->ctors = section_objs(info, ".ctors",sizeof(*mod->ctors), &mod->num_ctors);
#endif

#ifdef CONFIG_TRACEPOINTS
mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",sizeof(*mod->tracepoints_ptrs),&mod->num_tracepoints);
#endif
#ifdef HAVE_JUMP_LABEL
mod->jump_entries = section_objs(info, "__jump_table",sizeof(*mod->jump_entries),&mod->num_jump_entries);
#endif
#ifdef CONFIG_EVENT_TRACING
mod->trace_events = section_objs(info, "_ftrace_events",sizeof(*mod->trace_events),&mod->num_trace_events);
#endif
#ifdef CONFIG_TRACING
mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",sizeof(*mod->trace_bprintk_fmt_start),&mod->num_trace_bprintk_fmt);
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
/* sechdrs[0].sh_size is always zero */
mod->ftrace_callsites = section_objs(info, "__mcount_loc",sizeof(*mod->ftrace_callsites),&mod->num_ftrace_callsites);
#endif

mod->extable = section_objs(info, "__ex_table",sizeof(*mod->extable), &mod->num_exentries);

if (section_addr(info, "__obsparm"))
printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",mod->name);

info->debug = section_objs(info, "__verbose",sizeof(*info->debug), &info->num_debug);
}

static void *section_objs(const struct load_info *info,const char *name,size_t object_size,unsigned int *num)
{
//根據(jù)節(jié)區(qū)名找到節(jié)區(qū)索引值
unsigned int sec = find_sec(info, name);
//計算節(jié)區(qū)項目數(shù)
*num = info->sechdrs[sec].sh_size / object_size;
//返回節(jié)區(qū)起始地址
return (void *)info->sechdrs[sec].sh_addr;
}

static int check_module_license_and_versions(struct module *mod)
{
if (strcmp(mod->name, "ndiswrapper") == 0)
add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);

/* driverloader was caught wrongly pretending to be under GPL */
if (strcmp(mod->name, "driverloader") == 0)
add_taint_module(mod, TAINT_PROPRIETARY_MODULE,LOCKDEP_NOW_UNRELIABLE);

/* lve claims to be GPL but upstream won't provide source */
if (strcmp(mod->name, "lve") == 0)
add_taint_module(mod, TAINT_PROPRIETARY_MODULE,LOCKDEP_NOW_UNRELIABLE);

#ifdef CONFIG_MODVERSIONS
if ((mod->num_syms && !mod->crcs)|| (mod->num_gpl_syms && !mod->gpl_crcs)
|| (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
#ifdef CONFIG_UNUSED_SYMBOLS
|| (mod->num_unused_syms && !mod->unused_crcs)
|| (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
#endif
) {
return try_to_force_load(mod,"no versions for exported symbols");
}
#endif
return 0;
}

static struct module_attribute *modinfo_attrs[] = {
&module_uevent,
&modinfo_version,
&modinfo_srcversion,
&modinfo_initstate,
&modinfo_coresize,
&modinfo_initsize,
&modinfo_taint,
#ifdef CONFIG_MODULE_UNLOAD
&modinfo_refcnt,
#endif
NULL,
};

static void setup_modinfo(struct module *mod, struct load_info *info)
{
struct module_attribute *attr;
int i;

for (i = 0; (attr = modinfo_attrs[i]); i++) {
if (attr->setup)
attr->setup(mod, get_modinfo(info, attr->attr.name));
}
}

static int simplify_symbols(struct module *mod, const struct load_info *info)
{
Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
Elf_Sym *sym = (void *)symsec->sh_addr;
unsigned long secbase;
unsigned int i;
int ret = 0;
const struct kernel_symbol *ksym;

//遍歷模塊所有符號
for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
const char *name = info->strtab + sym[i].st_name;

//不同符號類型必須進行不同的處理。
switch (sym[i].st_shndx) {
case SHN_COMMON://標注了一個尚未分配的公共塊符號
DEBUGP("Common symbol: %s\n", name);
printk("%s: please compile with -fno-common\n", mod->name);
ret = -ENOEXEC;
break;

case SHN_ABS://完全定義的符號是最容易的,因為什么也不需要做。
DEBUGP("Absolute symbol: 0x%08lx\n", (long)sym[i].st_value);
break;

case SHN_UNDEF://未定義的符號,會進行crc檢查
//會調(diào)用check_version檢查crc值是否一致,若一致返回內(nèi)核中的同名符號
ksym = resolve_symbol_wait(mod, info, name);

//如果符號已經(jīng)解決(crc一致),則沒有問題,將內(nèi)核中的符號地址賦給模塊中的符號地址
if (ksym && !IS_ERR(ksym)) {
sym[i].st_value = ksym->value;//使用內(nèi)核中的符號值
break;
}

//如果符號定義為弱的,也沒有問題
if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
break;

printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n", mod->name, name, PTR_ERR(ksym));
ret = PTR_ERR(ksym) ?: -ENOENT;
break;

//解決其他符號時(符號通過st_shndx成員指向固定的節(jié)區(qū)),根據(jù)節(jié)區(qū)新的起始地址
default:
if (sym[i].st_shndx == info->index.pcpu)
secbase = (unsigned long)mod_percpu(mod);
else
secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
//根據(jù)符號所在節(jié)區(qū)的起始地址更改符號地址
sym[i].st_value += secbase;
break;
}
}
return ret;
}

static const struct kernel_symbol *resolve_symbol_wait(struct module *mod,const struct load_info *info, const char *name)
{
const struct kernel_symbol *ksym;
char owner[MODULE_NAME_LEN];

//調(diào)用resolve_symbol()函數(shù)
if (wait_event_interruptible_timeout(module_wq,!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))|| PTR_ERR(ksym) != -EBUSY,30 * HZ) <=0) {
printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",mod->name, owner);
}
return ksym;
}

static const struct kernel_symbol *resolve_symbol(struct module *mod,const struct load_info *info,const char *name,char ownername[])
{
struct module *owner;
const struct kernel_symbol *sym;
const unsigned long *crc;
int err;
mutex_lock(&module_mutex);

//從內(nèi)核中查找符號名為name的符號,并返回該符號的crc值
sym = find_symbol(name, &owner, &crc,!(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
if (!sym)
goto unlock;

//檢查該內(nèi)核中的符號和模塊中此未定義的符號的crc值是否一致
if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,owner)) {
sym = ERR_PTR(-EINVAL);
goto getname;
}

//更新模塊的依賴關(guān)系,即修正模塊的source_list和target_list鏈表
err = ref_module(mod, owner);
if (err) {
sym = ERR_PTR(err);
goto getname;
}

getname:
strncpy(ownername, module_name(owner), MODULE_NAME_LEN);

unlock:
mutex_unlock(&module_mutex);
return sym;
}

static int apply_relocations(struct module *mod, const struct load_info *info)
{
unsigned int i;
int err = 0;

//遍歷所有的節(jié)區(qū)
for (i = 1; i < info->hdr->e_shnum; i++) {
//對于重定位節(jié)區(qū)來說,其sh_info指向重定位所適用的節(jié)區(qū)的節(jié)區(qū)頭部索引
//像.rel.text節(jié)區(qū)對應(yīng).text節(jié)區(qū)
unsigned int infosec = info->sechdrs[i].sh_info;

//如果當前節(jié)區(qū)附加的節(jié)區(qū)的索引大于節(jié)區(qū)的數(shù)目,則info不是一個有效的索引,不做處理。
if (infosec >= info->hdr->e_shnum)
continue;

//如果節(jié)區(qū)在執(zhí)行過程中不占內(nèi)存,則 不需要進行處理。
if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
continue;

//此節(jié)區(qū)包含重定位表項,其中沒有補齊,進行符號重定位,則調(diào)用apply_relocate來處理
if (info->sechdrs[i].sh_type == SHT_REL)
err = apply_relocate(info->sechdrs, info->strtab,info->index.sym, i, mod);
//此節(jié)區(qū)包含重定位表項,其中有補齊,進行符號重定位,則調(diào)用apply_relocate_add來處理
else if (info->sechdrs[i].sh_type == SHT_RELA)
err = apply_relocate_add(info->sechdrs, info->strtab,info->index.sym, i, mod);
if (err < 0)
break;
}
return err;
}

int apply_relocate(Elf32_Shdr *sechdrs,const char *strtab,unsigned int symindex,unsigned int relsec,struct module *me)
{
//sechdrs表示節(jié)區(qū)頭部表起始地址,strtab表示字符串節(jié)區(qū)的內(nèi)容,symindex表示符號節(jié)區(qū)在節(jié)區(qū)頭部表的索引值,relsec表示重定位節(jié)區(qū)的索引值(例如:.rel.text節(jié)區(qū)),該節(jié)區(qū)的內(nèi)容是重定位結(jié)構(gòu)的表項
unsigned int i;
//找到重定位節(jié)區(qū)中的重定位表項起始地址
Elf32_Rel *rel = (void *)sechdrs[relsec].sh_addr;
Elf32_Sym *sym;
uint32_t *location;

DEBUGP("Applying relocate section %u to %u\n",relsec, sechdrs[relsec].sh_info);

//遍歷重定位節(jié)區(qū)中的重定位表項
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
//r_offset指定在此節(jié)區(qū)的區(qū)間r_offset處需要重新填寫這個符號(.r_info指定)的絕對地址。找到重定位的位置,重定位節(jié)區(qū)relsec的sh_info表示重定位所適用的節(jié)區(qū)的節(jié)區(qū)頭部索引值
//像.rel.text節(jié)區(qū)對應(yīng).text節(jié)區(qū)
location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr+ rel[i].r_offset;
//找到重定位的符號,ELF32_R_SYM(rel[i].r_info)表示這個符號在在符號表節(jié)區(qū)的內(nèi)容中的索引值
sym = (Elf32_Sym *)sechdrs[symindex].sh_addr+ ELF32_R_SYM(rel[i].r_info);

//sym->st_value是符號的絕對地址
switch (ELF32_R_TYPE(rel[i].r_info)) {//重定位類型
case R_386_32://絕對地址修正
//在要被修正地址處loc,把該地址下的值加上符號的絕對地址,等于這個位置處的取值就是符號地址了,一般來說*location初始值是0,加上符號絕對地址就能在此位置處找到符號地址了
*location += sym->st_value;
break;
case R_386_PC32://相對地址修正
/* Add the value, subtract its position */
*location += sym->st_value - (uint32_t)location;
break;
default:
pr_err("%s: Unknown relocation: %u\n",me->name, ELF32_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
}
return 0;
}

static int post_relocation(struct module *mod, const struct load_info *info)
{
//對模塊的異常表進行排序
sort_extable(mod->extable, mod->extable + mod->num_exentries);

//因為mod對象已經(jīng)復(fù)制到了內(nèi)核中的最終位置,拷貝模塊的percpu數(shù)據(jù)到mod對象的內(nèi)存地址處。
percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,info->sechdrs[info->index.pcpu].sh_size);

//初始化module對象中中字符串表、符號表相關(guān)的成員,初始化core部分中的字符串表和符號表
add_kallsyms(mod, info);

/* Arch-specific module finalizing. */
return module_finalize(info->hdr, info->sechdrs, mod);//x86是空函數(shù)
}

static void add_kallsyms(struct module *mod, const struct load_info *info)
{
unsigned int i, ndst;
const Elf_Sym *src;
Elf_Sym *dst;
char *s;
Elf_Shdr *symsec = &info->sechdrs[info->index.sym];//符號表節(jié)區(qū)

//符號表節(jié)區(qū)開始地址
mod->symtab = (void *)symsec->sh_addr;
//符號表項個數(shù)
mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
//找到字符串節(jié)區(qū)
mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;

//遍歷符號表節(jié)區(qū)中的符號表項,獲取符號的屬性(STB_LOCAL,STB_GLOBAL...)
for (i = 0; i < mod->num_symtab; i++)
mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);

//將core部分存儲符號項的偏移地址info->symoffs加上core部分的起始地址得到存儲符號項的地址。將符號表項的地址付給core_symtab成員,符號名稱起始地址付給core_strtab成員
mod->core_symtab = dst = mod->module_core + info->symoffs;
mod->core_strtab = s = mod->module_core + info->stroffs;
src = mod->symtab;//符號表節(jié)區(qū)開始地址

//將符號表節(jié)區(qū)的符號項(若干的Elf_Sym結(jié)構(gòu))內(nèi)容拷貝到core部分指定地址處
//將符號項中符號的名稱拷貝到core部分指定地址處,并重新設(shè)置符號項中名稱在符號字符串中的索引值st_name
for (ndst = i = 0; i < mod->num_symtab; i++) {
if (i == 0 || is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
//符號項拷貝到mod->module_core + info->symoffs
dst[ndst] = src[i];
//重新設(shè)置符號名在mod->core_strtab中的索引值
dst[ndst++].st_name = s - mod->core_strtab;
//符號名稱拷貝到mod->module_core + info->stroffs
s += strlcpy(s, &mod->strtab[src[i].st_name],KSYM_NAME_LEN) + 1;
}
}
mod->core_num_syms = ndst;//符號個數(shù)
}

static int complete_formation(struct module *mod, struct load_info *info)
{
int err;

mutex_lock(&module_mutex);

//確認是否有重定義符號
err = verify_export_symbols(mod);
if (err < 0)
goto out;

//模塊bug相關(guān)操作
module_bug_finalize(info->hdr, info->sechdrs, mod);

//設(shè)置模塊的狀態(tài)
mod->state = MODULE_STATE_COMING;
out:
mutex_unlock(&module_mutex);
return err;
}

static int verify_export_symbols(struct module *mod)
{
unsigned int i;
struct module *owner;
const struct kernel_symbol *s;
struct {
const struct kernel_symbol *sym;
unsigned int num;
} arr[] = {
{ mod->syms, mod->num_syms },
{ mod->gpl_syms, mod->num_gpl_syms },
{ mod->gpl_future_syms, mod->num_gpl_future_syms },
#ifdef CONFIG_UNUSED_SYMBOLS
{ mod->unused_syms, mod->num_unused_syms },
{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
#endif
};

//遍歷模塊中的符號,在內(nèi)核中檢查是否已經(jīng)導(dǎo)出,若已經(jīng)導(dǎo)出該符號,則給出著名error:“exports duplicate symbol”
for (i = 0; i < ARRAY_SIZE(arr); i++) {
for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
if (find_symbol(s->name, &owner, NULL, true, false)) {
printk(KERN_ERR "%s: exports duplicate symbol %s"" (owned by %s)\n",mod->name, s->name, module_name(owner));
return -ENOEXEC;
}
}
}
return 0;
}

static int do_init_module(struct module *mod)
{
int ret = 0;

current->flags &= ~PF_USED_ASYNC;

//內(nèi)核通知
blocking_notifier_call_chain(&module_notify_list,MODULE_STATE_COMING, mod);

//Set RO and NX regions for core
set_section_ro_nx(mod->module_core,mod->core_text_size,mod->core_ro_size,mod->core_size);

//Set RO and NX regions for init
set_section_ro_nx(mod->module_init,mod->init_text_size,mod->init_ro_size,mod->init_size);

//調(diào)用模塊構(gòu)造函數(shù)
do_mod_ctors(mod);

//啟動模塊
if (mod->init != NULL)
ret = do_one_initcall(mod->init);

if (ret < 0) {
/* Init routine failed: abort. Try to protect us from buggy refcounters. */
mod->state = MODULE_STATE_GOING;
synchronize_sched();
module_put(mod);
blocking_notifier_call_chain(&module_notify_list,MODULE_STATE_GOING, mod);
free_module(mod);
wake_up_all(&module_wq);
return ret;
}
if (ret > 0) {
printk(KERN_WARNING"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n""%s: loading module anyway...\n",__func__,mod->name, ret,__func__);
dump_stack();
}

//模塊初始化完成,更改狀態(tài),通知內(nèi)核
mod->state = MODULE_STATE_LIVE;
blocking_notifier_call_chain(&module_notify_list,MODULE_STATE_LIVE, mod);

if (current->flags & PF_USED_ASYNC)
async_synchronize_full();
mutex_lock(&module_mutex);
/* Drop initial reference. */
module_put(mod);
rim_init_extable(mod);
#ifdef CONFIG_KALLSYMS
mod->num_symtab = mod->core_num_syms;
mod->symtab = mod->core_symtab;
mod->strtab = mod->core_strtab;
#endif
//釋放初始化部分空間,這部分只是在初始化有效,初始化結(jié)束回收資源,清空
unset_module_init_ro_nx(mod);
module_free(mod, mod->module_init);
mod->module_init = NULL;
mod->init_size = 0;
mod->init_ro_size = 0;
mod->init_text_size = 0;
mutex_unlock(&module_mutex);
wake_up_all(&module_wq);
return 0;
}

int __init_or_module do_one_initcall(initcall_t fn)
{
int count = preempt_count();
int ret;
char msgbuf[64];

if (initcall_debug)
ret = do_one_initcall_debug(fn);
else
ret = fn();//執(zhí)行模塊的init_module函數(shù)

msgbuf[0] = 0;

if (preempt_count() != count) {
sprintf(msgbuf, "preemption imbalance ");
preempt_count() = count;
}

if (irqs_disabled()) {
strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf));
local_irq_enable();
}
WARN(msgbuf[0], "initcall %pF returned with %s\n", fn, msgbuf);

return ret;
}

轉(zhuǎn)載于:https://www.cnblogs.com/andyfly/p/9466805.html

《新程序員》:云原生和全面數(shù)字化實踐50位技術(shù)專家共同創(chuàng)作,文字、視頻、音頻交互閱讀

總結(jié)

以上是生活随笔為你收集整理的Linux驱动之内核加载模块过程分析的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。