日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

卷积核的数量是不是越多越好?-分类0,5

發布時間:2025/4/5 编程问答 65 豆豆
生活随笔 收集整理的這篇文章主要介紹了 卷积核的数量是不是越多越好?-分类0,5 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?

制作一個二分類的網絡來分類mnist的0和5,并向網絡上加卷積核從1個核到9個核。

網絡的結構是

(mnist 0 ,mnist9)81-con(3*3)*n-(49*n)-30-2-(1,0) || (0,1)

將mnist的28*28的圖片壓縮到9*9,用n個3*3的卷積核,節點數分別為n*49,30,2。讓0向(1,0)收斂,讓5向(0,1)收斂,讓n分別等于1-9.

與Tensorflow不同的是這個網絡通過網絡的輸出值與目標函數的絕對誤差判斷是否停止:

if (Math.abs(網路輸出值[0]-目標函數[0])< δ? &&? Math.abs(網絡輸出值[1]-目標函數[1])< δ?? ),

其中δ分別等于0.5到1e-6.的34個值。對應每個δ收斂199次,分別記錄與之對應的迭代次數,收斂時間,并計算199次的平均準確率和199次的最大準確率,來比較這10個網絡的性能差異。

?

首先比較最大準確率

?

?

81-30-2

1

2

3

4

5

6

7

8

9

δ

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

0.5

0.7948718

0.6730769

0.7692308

0.7638889

0.8178419

0.7820513

0.8012821

0.9027778

0.8904915

0.767094

0.4

0.9428419

0.9636752

0.9604701

0.9620727

0.9529915

0.9583333

0.9610043

0.9636752

0.9465812

0.9519231

0.3

0.9524573

0.9711538

0.9679487

0.9594017

0.9599359

0.9513889

0.9487179

0.9567308

0.9444444

0.9428419

0.2

0.9626068

0.9647436

0.9604701

0.9604701

0.9535256

0.9465812

0.9481838

0.9540598

0.9508547

0.9444444

0.1

0.9674145

0.9674145

0.9647436

0.9652778

0.957265

0.957265

0.9540598

0.9503205

0.954594

0.9449786

0.01

0.9695513

0.9700855

0.971688

0.9684829

0.9679487

0.9668803

0.9684829

0.9732906

0.9706197

0.971688

0.001

0.9775641

0.9727564

0.9797009

0.9807692

0.9807692

0.9807692

0.9786325

0.9818376

0.9823718

0.980235

9.00E-04

0.9775641

0.9738248

0.9813034

0.9818376

0.9807692

0.9813034

0.9807692

0.9823718

0.9818376

0.9818376

8.00E-04

0.9775641

0.9754274

0.9807692

0.9813034

0.9823718

0.9823718

0.982906

0.9823718

0.982906

0.9818376

7.00E-04

0.9770299

0.971688

0.9818376

0.982906

0.9834402

0.982906

0.982906

0.9818376

0.982906

0.9834402

6.00E-04

0.9770299

0.9727564

0.982906

0.982906

0.9839744

0.9834402

0.9823718

0.9839744

0.9834402

0.9823718

5.00E-04

0.9759615

0.9754274

0.9823718

0.9839744

0.9850427

0.9823718

0.9839744

0.9834402

0.9839744

0.9839744

4.00E-04

0.974359

0.9748932

0.9834402

0.982906

0.9839744

0.9839744

0.9845085

0.9845085

0.9850427

0.9850427

3.00E-04

0.980235

0.9770299

0.9845085

0.9866453

0.9845085

0.9839744

0.9855769

0.9850427

0.9855769

0.9850427

2.00E-04

0.980235

0.9754274

0.9855769

0.9861111

0.9866453

0.9850427

0.9850427

0.9861111

0.9861111

0.9866453

1.00E-04

0.9807692

0.9786325

0.9866453

0.9877137

0.9866453

0.9850427

0.9861111

0.9866453

0.9861111

0.9850427

9.00E-05

0.9807692

0.9775641

0.9861111

0.9871795

0.9877137

0.9871795

0.9855769

0.9866453

0.9861111

0.9855769

8.00E-05

0.9807692

0.9764957

0.9887821

0.9882479

0.9871795

0.9882479

0.9866453

0.9877137

0.9861111

0.9855769

7.00E-05

0.9807692

0.9775641

0.9887821

0.9877137

0.9877137

0.9903846

0.9871795

0.9877137

0.9871795

0.9871795

6.00E-05

0.9813034

0.9791667

0.9882479

0.9877137

0.9887821

0.9903846

0.9882479

0.9877137

0.9866453

0.9871795

5.00E-05

0.9807692

0.9780983

0.9898504

0.9887821

0.9882479

0.9898504

0.9882479

0.9877137

0.9866453

0.9882479

4.00E-05

0.9797009

0.9775641

0.9893162

0.9898504

0.9898504

0.9903846

0.9887821

0.9887821

0.9866453

0.9866453

3.00E-05

0.9797009

0.980235

0.9898504

0.9887821

0.9893162

0.9925214

0.9887821

0.9877137

0.9882479

0.9882479

2.00E-05

0.9791667

0.9813034

0.991453

0.9887821

0.9909188

0.991453

0.9898504

0.9882479

0.9882479

0.9877137

1.00E-05

0.9813034

0.9845085

0.9903846

0.9903846

0.9903846

0.991453

0.9909188

0.9887821

0.9882479

0.9893162

9.00E-06

0.9813034

0.9845085

0.9909188

0.991453

0.9903846

0.9919872

0.9893162

0.9893162

0.9893162

0.9903846

8.00E-06

0.9813034

0.982906

0.991453

0.991453

0.9903846

0.9925214

0.9893162

0.9893162

0.9893162

0.991453

7.00E-06

0.9813034

0.9850427

0.9909188

0.9925214

0.9909188

0.9919872

0.991453

0.9898504

0.9898504

0.9909188

6.00E-06

0.9818376

0.9839744

0.9893162

0.991453

0.9925214

0.991453

0.9893162

0.9893162

0.9909188

0.9909188

5.00E-06

0.9818376

0.9850427

0.991453

0.9935897

0.991453

0.9925214

0.9909188

0.9903846

0.9903846

0.9893162

4.00E-06

0.9813034

0.9866453

0.9935897

0.9930556

0.9930556

0.9925214

0.9919872

0.9898504

0.991453

0.9898504

3.00E-06

0.9834402

0.9855769

0.9930556

0.9930556

0.9919872

0.9919872

0.9925214

0.9909188

0.9903846

0.9909188

2.00E-06

0.9861111

0.9871795

0.9951923

0.9935897

0.9925214

0.9930556

0.991453

0.9909188

0.9925214

0.9919872

1.00E-06

0.9882479

0.9893162

0.9951923

0.9946581

0.9930556

0.9935897

0.9941239

0.9903846

0.9909188

?

?

?

2>3>4>5>6>7>8>9>1>81-30-2

隨著卷積核數量的增加網絡的最大性能先上升,當n=2時最大性能到達頂點,然后隨著卷積核數量的增加最大性能開始下降。最大準確率曲線是一條開口向下有極大值的曲線。原始的未加卷積核的網絡81-30-2的最大性能小于1個卷積核的網絡。

?

2.比較平均性能

?

81-30-2

1

81-30-2

2

3

4

5

6

7

8

9

δ

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

0.5

0.5335518

0.5023891

0.5335518

0.5185033

0.5139963

0.5152579

0.5164525

0.5226802

0.5270476

0.5192549

0.5158699

0.4

0.9188652

0.715718

0.9188652

0.7907755

0.7566518

0.7538386

0.7368949

0.7321302

0.7023123

0.7222598

0.6953357

0.3

0.9282497

0.8465807

0.9282497

0.8974064

0.882833

0.8699158

0.8699427

0.8521937

0.8459364

0.8328636

0.8368579

0.2

0.9465731

0.8818961

0.9465731

0.9070137

0.9074754

0.9003296

0.8978654

0.891082

0.8898338

0.8887493

0.8770884

0.1

0.9638148

0.904426

0.9638148

0.925815

0.9159687

0.9124039

0.9085143

0.9077116

0.9094189

0.9066137

0.8981714

0.01

0.9656402

0.9115181

0.9656402

0.9400233

0.9378436

0.9272887

0.9153996

0.9101195

0.8945395

0.8760925

0.8632318

0.001

0.9733148

0.903261

0.9733148

0.9617666

0.9538988

0.9504923

0.9438888

0.9492763

0.9436687

0.9433546

0.9410273

9.00E-04

0.9732342

0.9092202

0.9732342

0.9617237

0.959391

0.9572381

0.9567335

0.9579441

0.9562127

0.9571683

0.957469

8.00E-04

0.9731752

0.9105597

0.9731752

0.9651006

0.9609909

0.9641101

0.9621747

0.9644993

0.9630471

0.963235

0.9646228

7.00E-04

0.9728396

0.9110295

0.9728396

0.9668911

0.9688614

0.9664025

0.9659999

0.9659167

0.9660213

0.9664857

0.9644107

6.00E-04

0.972088

0.9108899

0.972088

0.9669609

0.9673796

0.9678467

0.9679487

0.9702761

0.968491

0.9676266

0.9660562

5.00E-04

0.9712746

0.91475

0.9712746

0.9700989

0.9727215

0.9699244

0.9717149

0.9708988

0.9723618

0.9699405

0.9666226

4.00E-04

0.9715672

0.9135072

0.9715672

0.9737657

0.9747079

0.9734731

0.9730758

0.971782

0.9713095

0.969111

0.9680266

3.00E-04

0.9745925

0.9094457

0.9745925

0.9743348

0.9740825

0.9747589

0.9730946

0.973347

0.9713632

0.9704801

0.9671756

2.00E-04

0.9764313

0.9190611

0.9764313

0.9768259

0.9767105

0.9756475

0.9741845

0.97361

0.9727269

0.9698841

0.9705338

1.00E-04

0.974861

0.9286497

0.974861

0.9799156

0.9793089

0.9780527

0.9642336

0.9778218

0.9756877

0.9740288

0.9741818

9.00E-05

0.9772608

0.9331299

0.9772608

0.9800069

0.9808605

0.9800767

0.9738677

0.9778057

0.9762783

0.9761038

0.9755294

8.00E-05

0.9783614

0.9257693

0.9783614

0.9808605

0.9806753

0.9799559

0.9765226

0.9771158

0.9773332

0.9777574

0.9743321

7.00E-05

0.9792284

0.9319353

0.9792284

0.9824067

0.9817651

0.9803397

0.9770541

0.9789546

0.9781359

0.9778862

0.9747938

6.00E-05

0.9795801

0.9219656

0.9795801

0.9829301

0.982557

0.9810135

0.9779963

0.9785681

0.9776339

0.9779855

0.9760931

5.00E-05

0.9791157

0.9300589

0.9791157

0.9827771

0.9829543

0.9817973

0.9796579

0.979172

0.9777976

0.978509

0.9770031

4.00E-05

0.9788687

0.9251224

0.9788687

0.9837918

0.9830295

0.9820577

0.9800901

0.9799666

0.9777332

0.9780849

0.9777252

3.00E-05

0.9788338

0.9216435

0.9788338

0.9843529

0.9833382

0.982761

0.9820014

0.9799344

0.9789143

0.9786701

0.978458

2.00E-05

0.9787935

0.9209053

0.9787935

0.9851286

0.9840307

0.9831154

0.9828738

0.9804498

0.9805196

0.9794861

0.9773708

1.00E-05

0.9783506

0.9308052

0.9783506

0.9853568

0.9842133

0.983816

0.9837516

0.9821114

0.980788

0.9797116

0.9699244

9.00E-06

0.9782352

0.9433573

0.9782352

0.9860467

0.9852763

0.9841811

0.9850052

0.982251

0.9801438

0.9727725

0.9775775

8.00E-06

0.9781332

0.9331621

0.9781332

0.9865191

0.9859098

0.9846642

0.9850266

0.9828496

0.9793895

0.979062

0.9805652

7.00E-06

0.9782218

0.9447344

0.9782218

0.9865809

0.9862749

0.9853568

0.9853326

0.9829677

0.9815289

0.9789224

0.9794861

6.00E-06

0.9785761

0.9488844

0.9785761

0.977454

0.9866238

0.985687

0.985789

0.9829946

0.981145

0.979419

0.9815343

5.00E-06

0.9790861

0.9555389

0.9790861

0.9850374

0.9871016

0.9865594

0.9858937

0.9835368

0.9823423

0.98078

0.9820201

4.00E-06

0.9797331

0.9611895

0.9797331

0.9869164

0.9868413

0.9859554

0.9862158

0.9849837

0.9821651

0.9823557

0.9758005

3.00E-06

0.9802726

0.9644107

0.9802726

0.9879257

0.9874587

0.9862212

0.9863312

0.9837865

0.9817812

0.9826214

0.980525

2.00E-06

0.9802673

0.9657878

0.9802673

0.9891149

0.9884841

0.9874587

0.9860682

0.9850749

0.9843126

0.9839502

0.9819557

1.00E-06

0.9832684

0.9736745

0.9832684

0.9895203

0.9887123

0.9878694

0.9870292

0.9842428

0.9839717

0.9848495

?

?

2>3>4>5>6>7>8>9>81-30-2>1

平均性能也是一條開口向下有極大值的曲線,頂點在n=2,當n>2后隨著卷積核的數量的增加網絡的平均性能下降,原始的無卷積核的網絡81-30-2的平均性能在9與1之間。

?

3.比較迭代次數

?

81-30-2

1

2

3

4

5

6

7

8

9

δ

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

0.5

9.160804

18.492462

17.311558

15.743719

15.432161

16.346734

16.798995

15.236181

12.527638

13.844221

0.4

259.27136

2288.4774

298.56281

236.08543

220.34171

208.94472

193.33668

194.93467

195.60302

173.17588

0.3

344.46734

2537.2513

154.73367

144.78392

140.98995

135.54774

139.46734

136.20603

131.78392

131.72864

0.2

447.94472

2826.4472

163.06533

145.31156

138.14573

142.52261

136.78392

142.35678

140.75377

138.37688

0.1

546.02513

2872.4774

182.70352

173.42714

163.88442

170.22111

166.94975

168.49749

167.97487

173.1005

0.01

855.83417

3587.7035

444.98995

492.43719

505.8794

518.46734

518.61307

526.22111

532.85427

519.0201

0.001

1523.0955

4529.1508

1436.4573

1692.8995

1901.6985

1920.9749

1954.9246

1907.5427

1998.1508

2039.1859

9.00E-04

1575.8392

4472.7688

1420.0452

1642.4271

1883.0754

1885.6432

1929.2211

1934.4422

2052.6181

2154.0955

8.00E-04

1657.0251

4529.0201

1491.2211

1749.6633

1986.2864

1940.6734

2014.0603

1949.593

2134.1055

2116.809

7.00E-04

1715.8492

4662.1859

1720.3116

1978.9397

2035.6985

2038.5678

2104

2170.8995

2200.1709

2291.8492

6.00E-04

1784.804

4733.206

1785.5176

2072.6784

2165.9045

2188.9648

2285.201

2195.0503

2285.4774

2328.201

5.00E-04

1845.3668

4991.0704

1883.0553

2268.2965

2208.1809

2327.2211

2576.4874

2318.2412

2525.1106

2651.4774

4.00E-04

1991.608

5026.5327

2050.1407

2512.005

2483.1608

2693.8141

2735.6633

2599.0804

2686.9799

2738.3216

3.00E-04

2476.593

5324.7889

2454.9648

2812.5779

2978.3568

2997.9598

3013.9196

3046.5678

2939.8643

3272.7186

2.00E-04

2879.5678

5625.8291

2968.9749

3547.2362

3372.3266

3704.4573

3738.206

3535.6583

3900.3668

3865.3216

1.00E-04

3656.4422

6300.1558

4395.1256

4725.9799

4806.7839

5709.2111

5251.6784

5196.9196

5116.0603

5670.2764

9.00E-05

3871.3367

6393.1809

4249.2563

4417.4121

4810.5578

5519.6834

5046.7487

5074.6633

5158.3317

5383.608

8.00E-05

4092.3317

6461.5829

4191.804

4866.4171

4839.5729

5669.0302

5343.5427

5026.0251

5428.9749

5520.8291

7.00E-05

4245.1759

6737.6583

4436.8945

4731.3266

5093.0653

5754.7688

5417.1307

5070.9347

5305.6784

5715.3668

6.00E-05

4380.0302

7093.3367

4591.5427

4900.6734

4905.6784

6238.9397

5270.2764

5661.1055

5813.1759

5918.1759

5.00E-05

4537.1457

7531.8392

4661.5176

5124.5126

5510.2161

6595.4372

5685.5729

5880.8844

6158.4221

6208.3467

4.00E-05

4640.3417

7936.4372

4891.402

5516.794

6135.8945

7171.2362

6050.5879

6745.5779

6235.9447

6859.3417

3.00E-05

4661.799

9152.593

5546.593

6137.5879

6695.1457

8369.5477

6584.7889

6960.005

7222.0101

7973.3216

2.00E-05

4680.2814

11076.392

6096.0151

7011.6583

7930.3819

10117.513

7742.3618

8165.598

9197.5678

9313.9598

1.00E-05

5416.9347

21376.387

7696.7487

9081.0251

10953.553

13592.714

10608.905

11073.864

12293.543

26256.166

9.00E-06

5648.5528

23626.186

7388.9196

9121.7035

11644.558

13399.03

10421.492

11290.291

25672.563

28369.141

8.00E-06

5854.5126

22841.116

7448.0352

10441.879

12020.628

14497.573

10589.693

12226.497

24378.653

31408.497

7.00E-06

6466.8241

27217.905

8028.1106

10264.025

11424.136

15736

11804.558

12377.161

28071.392

32087.392

6.00E-06

7063.5276

29178.518

13824.156

10173.643

12465.075

14446.613

12330.91

13247.849

27945.513

31361.045

5.00E-06

8079.7688

32877.06

17375.497

10970.327

13638.372

15564.558

13761.432

15111.543

28023.92

31892.99

4.00E-06

9789.3668

38820.513

18059.628

10907.543

12893.543

16265.276

13874.136

15322.347

30350.889

43566.864

3.00E-06

12842.985

42096.995

17814.714

12538.608

14224.08

18842.116

15662.533

17281.513

33741

44026.899

2.00E-06

15130.764

45979.095

19888.558

14292.839

18005.352

23446.09

19432.312

20531.422

37886.804

53454.829

1.00E-06

22746.784

57660.256

22674.513

18676.844

25511.854

31373.98

46643.784

25671.94

58280.683

?

?

1>2>81-30-2>3<4<5<6<8<9

除了第7條曲線迭代次數大體上是開口向上有極小值的曲線,當n=3時有極小值,原始網絡的迭代次數在2和3之間。

?

4.最后比較收斂時間

?

81-30-2

1

2

3

4

5

6

7

8

9

δ

耗時 min/199

耗時 min/200

耗時 min/201

耗時 min/202

耗時 min/203

耗時 min/204

耗時 min/205

耗時 min/206

耗時 min/207

耗時 min/208

0.5

3.74165

2.81195

2.3356167

2.3812833

2.41515

2.9003

2.6563167

2.6037

2.84575

2.8494333

0.4

4.1931333

5.6846

2.7243167

2.70495

2.7242

3.2568667

2.9844

2.9688167

3.2323833

3.3662333

0.3

4.3721667

6.0041333

2.5128

2.6714667

2.6016333

3.1050333

2.8730167

2.8513333

3.10375

3.19675

0.2

1.8564

6.3734667

2.5300833

2.5535333

2.58635

3.0920333

2.86965

2.8619667

3.1330667

1.5324833

0.1

4.6676167

6.4437667

2.5244667

2.58445

2.62775

3.1427833

2.9340667

2.9192333

3.1962167

3.3199833

0.01

5.2088833

7.3604833

2.8403333

-0.58325

3.2821333

3.7929667

3.6354833

3.6760833

4.0656333

4.34505

0.001

6.3676667

8.5501167

4.1040667

4.81455

5.6036

6.4232333

6.4751

6.5676833

4.7247667

8.4573333

9.00E-04

6.4966833

8.4807667

4.0384333

4.78085

4.4528667

6.3847167

6.43075

6.62765

7.4476667

8.8073

8.00E-04

6.7034

8.5498333

4.0271167

4.902

5.7288833

6.3719

6.6306333

6.7841833

7.6419833

8.7222167

7.00E-04

6.75745

8.7181

4.40325

5.2740167

5.7882833

6.6370667

4.7293

7.3665333

7.8004667

9.1840167

6.00E-04

6.8404

8.80775

4.4865833

5.37725

5.97655

6.9272667

7.19365

7.2842667

7.9979

9.2548

5.00E-04

6.96285

9.1413333

4.6114333

5.5824167

6.0483333

4.6591833

7.75675

7.63485

8.5834667

4.68755

4.00E-04

7.2862

9.1793667

2.0086833

5.9000167

6.5423833

7.85475

8.1671333

8.3504167

8.9637333

10.353083

3.00E-04

5.5816667

9.5621333

5.3298333

6.3522167

7.35655

8.4423167

8.7433667

9.4013667

9.5543167

11.735717

2.00E-04

8.71945

9.94355

5.9963833

7.6161167

7.98195

9.8058333

10.35895

7.4389833

11.78

12.985167

1.00E-04

10.0387

10.8083

7.8396667

6.6227

8.08105

13.075883

10.481833

13.735567

14.89045

18.13725

9.00E-05

10.4178

10.913867

7.6425667

8.9246333

10.598233

12.833733

13.65385

13.224017

15.28805

12.19625

8.00E-05

10.768333

11.00325

7.6148167

9.4912

10.727383

13.143783

14.537217

13.125967

12.697583

17.459533

7.00E-05

11.03965

11.351883

7.8541833

9.2809

11.121167

13.43135

14.232983

13.212067

15.641267

17.93935

6.00E-05

10.08165

11.803567

8.0594

9.40985

10.833517

11.598917

13.148567

14.464867

16.658133

14.880983

5.00E-05

11.744183

11.558367

8.1961

9.7128333

11.570617

15.025217

9.5606

14.932633

17.066967

19.808217

4.00E-05

11.89545

13.316783

6.1954

10.30215

9.7710167

16.06235

14.383

16.738283

15.5816

21.337733

3.00E-05

11.962133

15.221267

9.3110833

8.50165

13.173067

15.182917

15.406933

15.875433

19.50825

17.410333

2.00E-05

11.947567

17.901783

10.009533

12.496633

15.301883

21.597833

17.651783

19.716983

24.296367

25.427117

1.00E-05

11.3564

28.662117

12.06555

15.452733

20.2102

27.94395

23.37535

25.817217

30.363617

66.972917

9.00E-06

13.647017

32.964433

11.656317

15.563267

19.6612

24.301083

23.03795

26.32625

62.753017

73.75985

8.00E-06

14.8104

31.809883

9.7350667

14.798517

21.876733

29.526217

20.793

29.18205

56.518383

78.87625

7.00E-06

19.61805

36.461317

12.50245

16.808383

19.1992

28.709183

25.774433

27.901667

65.33635

82.823083

6.00E-06

20.565867

32.756467

19.5214

16.716867

22.1395

29.47665

25.1147

32.154583

66.056617

78.91485

5.00E-06

20.4579

39.824267

23.790033

17.896783

23.918717

28.025917

30.541083

33.241817

67.500017

81.8001

4.00E-06

26.225617

43.384617

25.791183

17.6785

24.153483

31.654933

28.107583

34.056233

71.296233

112.10312

3.00E-06

30.387583

47.09945

25.603317

19.945967

26.7583

35.474967

34.3632

39.994767

80.6607

113.52042

2.00E-06

38.4815

50.440683

23.894317

20.51575

30.430383

43.04565

39.376083

46.21565

87.64325

148.69013

1.00E-06

52.468967

64.474033

32.313933

28.640433

46.072367

57.658567

93.034733

56.501933

133.82317

?

?

1>81-30-2>2>3<4<5<6<8<9

與迭代次數類似曲線也是開口向上的曲線,當n=3時耗時最少

?

所以綜合上面的4個表格

  • 增加卷積核網絡最大性能先升后降有極大值,超過極大值隨著卷積核數量的增加最大性能下降
  • 增加卷積核網絡的平均性能也先升后降有極大值。超過極大值網絡的平均性能同樣會下降
  • 迭代次數曲線近似為一條開口向上的曲線有極小值,這個極小值對應的n與1和2的極大值對應的n接近
  • 收斂時間與迭代次數有正比關系
  • ?

    最大性能:2>3>4>5>6>7>8>9>1>81-30-2

    平均性能:2>3>4>5>6>7>8>9>81-30-2>1

    迭代次數:1>2>81-30-2>3<4<5<6<8<9

    收斂時間:1>81-30-2>2>3<4<5<6<8<9

    因此對于這個網絡無論更在乎最大性能還是平均性能都應該選擇2個卷積核,因為n=2同時是這個網絡在1-9個卷積核內平均性能和最大性能的極大值。

    如果更在乎收斂效率也可以選擇3個卷積核,3比2的性能稍差但需要的迭代次數只有2的82%,可以節省些時間。

    如果選擇了8個卷積核當收斂標準δ=1e-6的時候要比2個卷積核多付出2.57倍的計算量但最大性能比n=2的網絡還是要差0.5%.因此就這個網絡來說卷積核的數量肯定不是越多越好,當卷積核的數量超過2個以后卷積核的數量對網絡的性能已經沒有任何正面價值,而且數量越多越慢性能也越差。

    ?

    實驗數據

    學習率r=0.1

    權重初始化方式

    Random rand1 =new Random();

    int ti1=rand1.nextInt(98)+1;

    int xx=1;

    if(ti1%2==0)

    { xx=-1;}

    tw[a][b]=xx*((double)ti1/x);

    第一層第二層和卷積核的權重的初始化的x分別為1000,1000,200

    ?

    ?

    ?

    總結

    以上是生活随笔為你收集整理的卷积核的数量是不是越多越好?-分类0,5的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。