日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【Efficient-Net】基于Efficient-Net效滤网的目标识别算法的MATLAB仿真

發布時間:2025/4/5 编程问答 18 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【Efficient-Net】基于Efficient-Net效滤网的目标识别算法的MATLAB仿真 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
%定義efficientnet的結構 layers = [imageInputLayer([128 128 3]);%注意,128,128,3是訓練樣本的大小,這個和參考文獻不一樣,要根據實際輸入設置%stage1convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 1batchNormalizationLayer;reluLayer;maxPooling2dLayer(floor(resl)+1,'Stride',2);%stage2convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 1batchNormalizationLayer;reluLayer;%stage3convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 2batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 2batchNormalizationLayer;reluLayer; %stage4convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 2batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 2batchNormalizationLayer;reluLayer;maxPooling2dLayer(floor(resl)+1,'Stride',2);%stage5convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3batchNormalizationLayer;reluLayer;maxPooling2dLayer(floor(resl)+1,'Stride',2);%stage6convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3batchNormalizationLayer;reluLayer;%stage7convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 4batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 4batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 4batchNormalizationLayer;convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 4batchNormalizationLayer;reluLayer;maxPooling2dLayer(floor(resl)+1,'Stride',2);%stage8convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 1batchNormalizationLayer;reluLayer;maxPooling2dLayer(floor(resl)+1,'Stride',2);%stage9convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 1batchNormalizationLayer;reluLayer;%FCfullyConnectedLayer(CLASSNUM);%softmaxsoftmaxLayer;%輸出分類結果classificationLayer;];options = trainingOptions('sgdm', ...'InitialLearnRate', 0.01, ...'MaxEpochs', 200, ...'Shuffle', 'every-epoch', ...'ValidationData', imdsValidation, ...'ValidationFrequency', 5, ...'Verbose', false, ...'Plots', 'training-progress'); rng(1); %使用訓練集訓練網絡 net = trainNetwork(imdsTrain, layers, options);

訓練過程如下:

訓練精度為94.17%。

平均損失過程如下:

不同訓練樣本數量對應的訓練性能(注意,每次訓練會有一定的波動和偏差)

訓練樣本比例

改進前的訓練性能

改進后的訓練性能

5%

85.46%

92.23%

10%

89.20%

90.08%

20%

94.65%

92.94%

40%

93.53%

94.82%

60%

94.66%

98.06%

80%

94.67%

98.08%

90%

98.08%

100%

?A05-79

總結

以上是生活随笔為你收集整理的【Efficient-Net】基于Efficient-Net效滤网的目标识别算法的MATLAB仿真的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。