日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Summation Order

發布時間:2025/4/5 编程问答 14 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Summation Order 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

This note is for my students (first year) who got confused in class when I showed the proof of theorem 1.4.3 in 林亞南's 高等代數 to them. It seems some detailed explanations are needed here. Writing in english adds an extra layer of burden on them, but it probably is worth it and they actually received it well.

?

1. The Question

Why does the following equation hold?

$ \displaystyle \begin{array}{rcl} & \sum_{i=1}^{n} \sum_{j=1}^{i-1}& \left(-1\right)^{i+j}a_{i2}a_{j1}M\begin{bmatrix}i & j\\ 1 & 2 \end{bmatrix}\\ &+&\sum_{i=1}^{n}\sum_{j=i+1}^{n}\left(-1\right)^{i+j+1}a_{i2}a_{j1}M\begin{bmatrix}i & j\\ 1 & 2 \end{bmatrix}\\ = & \sum_{j=1}^{n} \sum_{i=j+1}^{n} &\left(-1\right)^{i+j}a_{i2}a_{j1}M\begin{bmatrix}i & j\\ 1 & 2 \end{bmatrix}\\ &+&\sum_{j=1}^{n}\sum_{i=1}^{j-1}\left(-1\right)^{i+j+1}a_{i2}a_{j1}M\begin{bmatrix}i & j\\ 1 & 2 \end{bmatrix} \end{array} $

The above expressions are very messy but their nature is actually much simpler. Let us use $ {f\left(i,j\right)}$ and $ {g\left(i,j\right)}$ to substitute the expressions inside the summation operator $ {\Sigma}$ to clean things up

$ \displaystyle \begin{array}{rcl} f\left(i,j\right) & = & \left(-1\right)^{i+j}a_{i2}a_{j1}M\begin{bmatrix}i & j\\ 1 & 2 \end{bmatrix},\\ g\left(i,j\right) & = & \left(-1\right)^{i+j+1}a_{i2}a_{j1}M\begin{bmatrix}i & j\\ 1 & 2 \end{bmatrix}. \end{array} $

Then the equation we want to prove is simply

$ \displaystyle \sum_{i=1}^{n}\sum_{j=1}^{i-1}f\left(i,j\right)+\sum_{i=1}^{n}\sum_{j=i+1}^{n}g\left(i,j\right)=\sum_{j=1}^{n}\sum_{i=j+1}^{n}f\left(i,j\right)+\sum_{j=1}^{n}\sum_{i=1}^{j-1}g\left(i,j\right). $

We can make it even simpler by proving the following two equations separately (hint, they are in fact just one equation)

$ \displaystyle \sum_{i=1}^{n}\sum_{j=1}^{i-1}f\left(i,j\right)=\sum_{j=1}^{n}\sum_{i=j+1}^{n}f\left(i,j\right) \ \ \ \ \ (1)$

and

$ \displaystyle \sum_{i=1}^{n}\sum_{j=i+1}^{n}g\left(i,j\right)=\sum_{j=1}^{n}\sum_{i=1}^{j-1}g\left(i,j\right) \ \ \ \ \ (2)$

Note that these equations hold for any function $ {f\left(i,j\right)}$ or $ {g\left(i,j\right)}$, so this problem is indeed only about how to play with summation indices.

2. Calculation

First of all, double summation operator

$ \displaystyle \sum_{i=1}^{n}\sum_{j=1}^{i-1}\cdots $

has nothing to do with multiplication! It is a notation used to generate double-indices, such as

$ \displaystyle \left(1,1\right),\left(1,2\right),\ldots $

One simple example is

$ \displaystyle \sum_{i=1}^{2}\sum_{j=1}^{3}f\left(i,j\right) $

yields

$ \displaystyle f\left(1,1\right)+f\left(1,2\right)+f\left(1,3\right)+f\left(2,1\right)+f\left(2,2\right)+f\left(2,3\right). $

Now I'm going to prove the first equation (1) and leave the second one as an exercise ?. Look at the summation on the left side of this equation.

$ \displaystyle \sum_{i=1}^{n}\sum_{j=1}^{i-1} \ \ \ \ \ (3)$

Here we omit $ {f\left(i,j\right)}$ and only focus on the summation operator. When $ {i=1}$, the value of $ {j}$ goes from $ {1}$ to $ {i-1=1-1=0}$. But it can not be allowed since the index on top of $ {\Sigma}$ should always be greater than the index at the bottom which is the starting index. So we ignore the case of $ {i=1}$. When $ {i=2}$, the value of $ {j}$ goes from $ {1}$ to $ {i-1=2-1=1}$. So there is only one value for $ {j}$: $ {1.}$ We can continue and all $ {\left(i,j\right)}$ indices generated this way are listed in the following table

$ {i=1}$?
$ {i=2}$$ {j=1}$
$ {i=3}$$ {j=1,2}$
$ {i=4}$$ {j=1,2,3}$
$ {\ldots}$$ {\ldots}$
$ {i=n}$$ {j=1,2,3,\ldots,n-1}$
?

We plot these indices on the plane shown in the following figure.

?

Figure: Double Index

Now let us change the way to look at them. Instead of counting $ {i}$ first, we first count the value of $ {j}$. If $ {j=1}$, $ {i}$ can take values $ {2,3,\ldots,n}$. If $ {j=2}$, $ {i}$ can take values $ {3,4,\ldots,n}$, and so on. The range of $ {j}$'s value is from 1 to $ {n-1}$. So we can use the following double summation operator to generate exactly the same set of $ {\left(i,j\right)}$ indices as the double summation operator in (3)

$ \displaystyle \sum_{j=1}^{n-1}\sum_{i=j+1}^{n} $

This expression can be improved a little by enlarging the range of $ {j}$ a little to $ {1,2,\ldots,n}$, as we know if $ {j=n}$, the summation operator on $ {i}$ becomes

$ \displaystyle \sum_{i=n+1}^{n} $

which does not generate any $ {i}$ index anyway. Finally we see the index set in the above table (or the figure) can be generated either by

$ \displaystyle \sum_{i=1}^{n}\sum_{j=1}^{i-1} $

or by

$ \displaystyle \sum_{j=1}^{n-1}\sum_{i=j+1}^{n} $

Thus, for any function $ {f\left(i,j\right)}$

$ \displaystyle \sum_{i=1}^{n}\sum_{j=1}^{i-1}f\left(i,j\right)=\sum_{j=1}^{n}\sum_{i=j+1}^{n}f\left(i,j\right) $

This is equation (1).

轉載于:https://www.cnblogs.com/jingyuewang/p/7719909.html

總結

以上是生活随笔為你收集整理的Summation Order的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。