日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

Python量化(八)下影线选股法

發布時間:2025/4/5 python 19 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Python量化(八)下影线选股法 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat May 5 12:43:52 2018@author: luogan """# -*- coding: utf-8 -*- """ Created on Thu Dec 14 15:26:31 2017@author: 量化之王 """import pymongo import pandasimport pandas as pd import matplotlib.pyplot as plt import numpy as np import pylab as pl import datetime import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlcfrom matplotlib.pylab import date2numimport talib from dateutil.parser import parse import tushare as tsclient1 = pymongo.MongoClient('192.168.10.182',27017) db1 = client1.stock.low_closedef before_month_lastday(ti,k):from dateutil.parser import parsetoday=parse(str(ti))#first = datetime.date(day=1, month=today.month, year=today.year)lastMonth = today - datetime.timedelta(days=k)def plus(k):if k<10:return '0'+str(k)else:return str(k)y=lastMonth.yearm=lastMonth.monthd=lastMonth.day#day=calendar.monthrange(y,m)[1]cc=str(y)+plus(m)+plus(d)#bb=parse(cc)#pacific = pytz.timezone('Asia/Shanghai')#return pacific.localize(bb) return int(cc) def polyfit(c,k):#print(close)xlist=list(range(len(c)))bbz1 = np.polyfit(xlist, c,k)# 生成多項式對象{#bbp1 = np.poly1d(bbz1)#f5=bbp1(pl-1)#f6=bbp1(pl)return bbz1[0]def potential_index(tl):#df=ts.get_hist_data(name,start=bf,end=now)df=ts.get_hist_data(tl[0],start=tl[1],end=tl[2])if str(type(df))!="<class 'NoneType'>":if df.shape[0]>250:date=df.indexdate1=list(map(parse,date))df['date']=date1df=df.sort_values(by='date')#print('df=',df)#df=ts.get_k_data('002230',start='2015-01-12',end='2018-04-30')#提取收盤價closed=df['close'].valuesopend=df['open'].valueslow=df['low'].values#獲取均線的數據,通過timeperiod參數來分別獲取 5,10,20 日均線的數據。#ma5=talib.SMA(closed,timeperiod=30)#ma10=talib.SMA(closed,timeperiod=60)#ma250=talib.SMA(closed,timeperiod=250)p=closed[-1]o=opend[-1]opp=min(p,o)n=low[-1]#print('p=',p)#print('n=',n)ra=(opp-n)/opp#print('kk=',kk)#print('ra=',ra)if ra>=0.05:#print('kk=',kk)print('ra=',ra)print('name',tl[0])#db1.insert_one({'name':tl[0],'ratio':ra})#db1.save({'name':tl[0]})tt=before_month_lastday(tl[2],0)#db1.save({'name':tl[0],'potential':vv})#return vv*1.0db1.replace_one({"name":tl[0],"date":tt},{ "name":tl[0],"date":tt,'ratio':round(ra,2)},True)print('$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$')#return vv*1.0#mm=potential_index(code[100])ak=ts.get_stock_basics()code=list(ak.index)def front_step_time(day):now = datetime.datetime.now()front = now - datetime.timedelta(days=day)d1 = front.strftime('%Y-%m-%d')#return int(d1)return d1now=front_step_time(0)bf=front_step_time(720)sheet=pd.DataFrame() sheet['code']=codesheet['bf']=bf sheet['sta']=now #name='600354' #b1=potential_vocanol(name,'2017-11-14','2018-02-14') #b2=potential_vocanol(name,'2018-02-14','2018-04-13')import time from multiprocessing import Pool import numpy as npte =sheet.values''' for name in te:mm=potential_index(name)#print(name,mm)''' if __name__ == "__main__" :startTime = time.time()testFL =sheet.values#ll=codepool = Pool(20)#可以同時跑10個進程pool.map(potential_index,testFL)pool.close()pool.join() endTime = time.time()print ("time :", endTime - startTime) { "_id" : ObjectId("5aed3d531815c4ffea37f824"), "name" : "300519", "date" : NumberInt(20180505), "ratio" : 0.06 } { "_id" : ObjectId("5aed3d571815c4ffea37f835"), "name" : "002806", "date" : NumberInt(20180505), "ratio" : 0.06 } { "_id" : ObjectId("5aed3d5e1815c4ffea37f850"), "name" : "600753", "date" : NumberInt(20180505), "ratio" : 0.08 } { "_id" : ObjectId("5aed3d5e1815c4ffea37f854"), "name" : "002047", "date" : NumberInt(20180505), "ratio" : 0.06 } { "_id" : ObjectId("5aed3d621815c4ffea37f865"), "name" : "002726", "date" : NumberInt(20180505), "ratio" : 0.08 } { "_id" : ObjectId("5aed3d661815c4ffea37f878"), "name" : "002592", "date" : NumberInt(20180505), "ratio" : 0.08 } { "_id" : ObjectId("5aed3d661815c4ffea37f87a"), "name" : "002584", "date" : NumberInt(20180505), "ratio" : 0.1 } { "_id" : ObjectId("5aed3d671815c4ffea37f87e"), "name" : "002161", "date" : NumberInt(20180505), "ratio" : 0.06 } { "_id" : ObjectId("5aed3d801815c4ffea37f8e1"), "name" : "002691", "date" : NumberInt(20180505), "ratio" : 0.09 }

總結

以上是生活随笔為你收集整理的Python量化(八)下影线选股法的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。