日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

tensorflow 进阶(四)---CNN

發布時間:2025/4/5 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 tensorflow 进阶(四)---CNN 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
#!/usr/bin/python#這是一個很經典的cnn 入門教程了import tensorflow as tf import sys from tensorflow.examples.tutorials.mnist import input_data#定以權重變量,初始狀態是一個隨機數 #https://blog.csdn.net/u013713117/article/details/65446361/ #tf.truncated_normal 截斷正太分布,下面函數中隨機數取自(0-0.1×標準差,0+0.1×標準差) #用截斷正太分布的原因應該是避免有些奇異值導致某些神經元不工作def weight_variable(shape):initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)#bias 采用0.1的常數 def bias_variable(shape):initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)#二維卷積,x是輸入,W是卷積核的參數, def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)sess = tf.InteractiveSession()x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10])W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10]))W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32])#數據的輸入是28*28的矩陣x_image = tf.reshape(x, [-1, 28, 28, 1])#在這個函數下,W_conv1 = weight_variable([5, 5, 1, 32]) #表示卷積核的大小是5*5,因為圖像是灰度圖只有一個通道,32表示有32個卷積核 #對于stride=1*1的卷積,并且padding=SAME,那么卷積后的圖像和卷積前的圖像,有相同的shape,conv1的shape是28*28*32 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #由于池化層的stride 是2*2,padding=SAME,那么每池化一次,shape降低一半,pool1的shape是14*14*32 h_pool1 = max_pool_2x2(h_conv1)W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64])#輸入層pool1層,對pool1層進行一次卷積,pool1層 的shape是14*14*32,conv2的shape也是14*14*64 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2)# Now image size is reduced to 7*7#pool2的shape是7*7*64 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024])h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])print(h_pool2_flat.shape) print(W_fc1.shape) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)print(h_fc1.shape)keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) print(h_fc1_drop.shape) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)print(y_conv.shape)cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables())for i in range(20000):batch = mnist.train.next_batch(50)if i%100 == 0:train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})print ("step %d, training accuracy %.3f"%(i, train_accuracy))train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})print ("Training finished")print ("test accuracy %.3f" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

總結

以上是生活随笔為你收集整理的tensorflow 进阶(四)---CNN的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。