日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

专题一:预处理数据(使用sklearn-preprocessing)

發布時間:2025/4/5 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 专题一:预处理数据(使用sklearn-preprocessing) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

環境:Python3.6.5
編譯器:jupyter notebook

注:這篇文章會不斷更新…


1. 標準化

數據集的標準化(Standardization)對scikit-learn中實現的大多數機器學習算法來說是常見的要求 。如果個別特征或多或少看起來不是很像標準正態分布(具有零均值和單位方差),那么這些機器學習算法的表現可能會比較差。

在機器學習算法的目標函數(例如SVM的RBF內核或線性模型的l1和l2正則化) 中有很多地方都假定了所有特征都是以0為中心而且它們的方差也具有相同的階數。 如果某個特征的方差比其他特征大幾個數量級,那么它就會在學習算法的目標函數中占據主導位置, 導致學習器并不能像我們所期望的那樣,從其他特征中學習。

函數scale提供了一個快速簡單的方法來在單個array-like數據集上執行上述標準化操作

from sklearn import preprocessing import numpy as np #創建一組特征數據,每一行表示一個樣本,每一列表示一個特征 X_train = np.array([[ 1., -1., 2.],[ 2., 0., 0.],[ 0., 1., -1.]]) #將每一列特征標準化為標準正太分布,注意,標準化是針對每一列而言的 X_scaled = preprocessing.scale(X_train) X_scaled """ 輸出: array([[ 0. , -1.22474487, 1.33630621],[ 1.22474487, 0. , -0.26726124],[-1.22474487, 1.22474487, -1.06904497]]) """

被縮放的數據具有零均值和單位方差:

X_scaled.mean(axis=0) """ 輸出:array([0., 0., 0.]) """ X_scaled.std(axis=0) """ 輸出:array([1., 1., 1.]) """

preprocessing模塊還提供了一個工具類StandardScaler,它實現了Transformer的API來計算訓練集上的平均值和標準偏差,以便以后能夠在測試集上重新應用相同的變換。

scaler = preprocessing.StandardScaler().fit(X_train) #將每一列特征標準化為標準正太分布,注意,標準化是針對每一列而言的 scaler.transform(X_train) """ 輸出: array([[ 0. ..., -1.22..., 1.33...],[ 1.22..., 0. ..., -0.26...],[-1.22..., 1.22..., -1.06...]]) """

(本文參考官網文檔)

《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀

總結

以上是生活随笔為你收集整理的专题一:预处理数据(使用sklearn-preprocessing)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 亚洲综合日韩精品欧美综合区 | 成人免费看片' | 成人图片小说 | 国产又粗又猛又爽又黄又 | 欧美影音| av污在线观看| 九九精品网 | 亚洲福利在线视频 | 18做爰免费视频网站 | 亚洲av无码国产精品麻豆天美 | 国产精品二区一区二区aⅴ 一卡二卡三卡在线观看 | 91狠狠操 | 久久久久亚洲国产 | 欧美成人一区在线 | av导航网站 | 91福利在线视频 | 黄色片地址| 亚洲av无码国产精品麻豆天美 | 日韩黄大片 | 久久好色 | 精品少妇一区二区三区在线观看 | 国产在线不卡 | 日本在线一 | 夜夜草| 成人三级在线看 | 东北少妇露脸无套对白 | 国产乱子伦精品视频 | 91成人入口 | 第一页综合 | 日韩1区2区3区 | 亚洲一区二区三区在线视频观看 | 国产精品无码毛片 | 亚洲色图17p| 国产无套精品一区二区 | 五月色婷婷综合 | 日本69av | 成人涩涩 | 日韩精品一区二区在线视频 | 91天天看| 国产美女黄色 | 中国久久久 | 欧美 亚洲 另类 激情 另类 | 午夜视频在线免费观看 | 国产无码精品一区二区 | 婷婷网址 | 亚洲欧美激情小说另类 | 日本打白嫩屁股视频 | 粉嫩av网 | 成人h动漫在线 | 日韩精品成人在线观看 | 中文字幕av高清 | 精品国产一级久久 | 午夜激情欧美 | 国产www在线观看 | 色图av | 国产ts丝袜人妖系列视频 | 日韩精品福利视频 | 午夜精品久久久久久久久久久久 | 久草视频在线看 | 夜夜骚网站 | 午夜精品久久久久久毛片 | 毛片毛片毛片毛片毛片 | 91精品国产乱码在线观看 | 最新高清无码专区 | 欧美草b| 日韩精品一区二区三区不卡在线 | 最新天堂在线视频 | 一区二区三区四区五区视频 | 日批动态图 | 国产精品69久久久久孕妇欧美 | 超碰人人射 | cao我| 伊人婷婷综合 | 一区二区福利 | 免费网站观看www在线观 | 欧美毛片视频 | 黄色一极毛片 | 激情五月综合 | 国产免费又黄又爽又色毛 | 亚洲精品国产无码 | 国产精品99久久久久久宅男 | 久久久久成人精品无码 | 国产视频999 | 丰满双乳秘书被老板狂揉捏 | 久久国产精品免费看 | 五月天激情四射 | 五月婷婷六月丁香综合 | 夜色成人 | 日本精品一区二区三区四区的功能 | 国产999精品视频 | 成人高潮片免费网站 | 国产又色又爽无遮挡免费 | 国产精品亚洲一区二区三区 | 国产一区二区免费 | 亚洲综合激情 | 夜夜精品一区二区无码 | 精品久久久久久中文字幕人妻最新 | 日韩av在线播放网址 | 亚洲精品成人在线视频 |