日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Advice for students of machine learning--转

發布時間:2025/4/5 编程问答 13 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Advice for students of machine learning--转 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

原文地址:http://www.mimno.org/articles/ml-learn/

written by?david mimno

One of my students recently asked me for advice on learning?ML. Here’s what I wrote. It’s biased toward my own experience, but should?generalize.

?

My current favorite introduction is Kevin Murphy’s book (Machine Learning). You might also want to look at books by Chris Bishop (Pattern Recognition), Daphne Koller (Probabilistic Graphical Models), and David MacKay (Information Theory, Inference and Learning?Algorithms).

Anything you can learn about linear algebra and probability/statistics will be useful. Strang’s Introduction to Linear Algebra, Gelman, Carlin, Stern and Rubin’s Bayesian Data Analysis, and Gelman and Hill’s Data Analysis using Regression and Multilevel/Hierarchical models are some of my favorite?books.

Don’t expect to get anything the first time. Read descriptions of the same thing from several different?sources.

There’s nothing like trying something yourself. Pick a model and implement it. Work through open source implementations and compare. Are there computational or mathematical tricks that make things?work?

Read a lot of papers. When I was a grad student, I had a 20 minute bus ride in the morning and the evening. I always tried to have an interesting paper in my bag. The bus isn’t the important part — what was useful was having about half an hour every day devoted to?reading.

Pick a paper you like and “live inside it” for a week. Think about it all the time. Memorize the form of each equation. Take long walks and try to figure out how each variable affects the output, and how different variables interact. Think about how you get from Eq. 6 to Eq. 7 — authors often gloss over algebraic details. Fill them?in.

Be patient and persistent. Remember von Neumann: “in mathematics you don’t understand things, you just get used to?them.”

轉載于:https://www.cnblogs.com/davidwang456/p/5511297.html

《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀

總結

以上是生活随笔為你收集整理的Advice for students of machine learning--转的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。