日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

READING NOTE: R-FCN: Object Detection via Region-based Fully Convolutional Networks

發(fā)布時(shí)間:2025/3/21 编程问答 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 READING NOTE: R-FCN: Object Detection via Region-based Fully Convolutional Networks 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

轉(zhuǎn)載自:

http://blog.csdn.net/joshua_1988/article/details/51484412

?

TITLE: R-FCN: Object Detection via Region-based Fully Convolutional Networks

AUTHER: Jifeng Dai, Yi Li, Kaiming He, Jian Sun

ASSOCIATION: MSRA, Tsinghua University

FROM: arXiv:1605.06409

CONTRIBUTIONS

  • A framework called Region-based Fully Convolutional Network (R-FCN) is develpped for object detection, which consists of shared, fully convolutional architectures.
  • A set of position-sensitive score maps are introduced to enalbe FCN representing translation variance.
  • A unique ROI pooling method is proposed to shepherd information from metioned score maps.
  • METHOD

  • The image is processed by a FCN manner network.
  • At the end of FCN, a RPN (Region Proposal Network) is used to generate ROIs.
  • On the other hand, a score map of k?2?(C+1)? channels is generated using a bank of specialized convolutional layers.
  • For each ROI, a selective ROI pooling is utilized to generate a C+1? channel score map.
  • The scores in the score map are averaged to vote for category.
  • Another 4k?2?? dim convolutional layer is learned for bounding box regression.
  • Training Details

  • R-FCN is trained end-to-end with pre-computed region proposals. Both category and position are learnt with the loss function: L(s,t?x,y,w,h?)=L?cls?(s?c????)+λ[c???>0]L?reg?(t,t???)?.
  • For each image, N proposals are generated and B out of N proposals are selected to train weights according to the highest losses. B is set to 128 in this work.
  • 4-step alternating training is utilized to realizing feature sharing between R-FCN and RPN.
  • ADVANTAGES

  • It is fast (170ms/image, 2.5-20x faster than Faster R-CNN).
  • End-to-end training is easier to process.
  • All learnable layers are convolutional and shared on the entire image, yet encode spatial information required for object detection.
  • DISADVANTAGES

  • Compared with Single Shot methods, more computation resource is needed
  • ?

    總結(jié)

    以上是生活随笔為你收集整理的READING NOTE: R-FCN: Object Detection via Region-based Fully Convolutional Networks的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 激情插插 | 日本特黄特黄刺激大片 | 天天伊人网 | 亚洲天堂中文字幕在线 | 欧美男女视频 | 国产成人在线播放视频 | 婷婷久久五月 | av手机天堂网 | 无码少妇精品一区二区免费动态 | 国产一区欧美 | 天干夜夜爽爽日日日日 | 17草在线| 黄色网络在线观看 | 污污网站在线观看 | 亚洲视屏| av片亚洲 | 日韩乱码人妻无码中文字幕 | 青草福利在线 | 日本激情电影 | 嫩草视频在线观看 | 日本欧美久久久久免费播放网 | 伊人激情综合 | 宝贝乖h调教灌尿穿环 | 日韩中文字幕在线观看视频 | 小柔的淫辱日记(h | 国产精品久久久久久在线观看 | 欧美bbbbbbbbbbbb精品 | 美女av免费看 | 波多野结衣免费观看视频 | 国产毛片自拍 | 久久久久久久久久久久久久av | 精品日本视频 | 中国黄色大片 | 91在线免费观看网站 | 另类亚洲激情 | 夜夜爽av | 欧美激情xxx | 可以在线看的av | 久久久久久久久久久99 | 国产夫妇交换聚会群4p | 欧美深性狂猛ⅹxxx深喉 | 久久国产柳州莫菁门 | 日韩精品欧美激情 | 天天干夜夜夜 | jizz毛片| 中国丰满老妇xxxxx交性 | 啪啪自拍 | 女优中文字幕 | 久久七 | 亚洲福利在线播放 | 19禁大尺度做爰无遮挡电影 | 国产片网站 | 激情视频区 | 熟女一区二区三区视频 | 久久久无码精品亚洲无少妇 | 成人三级晚上看 | 日韩av一区二区三区四区 | 欧美日韩国产免费观看 | 日韩和一区二区 | 伊人天天操 | 九九热精品视频 | 大奶在线播放 | 俄罗斯av片 | www,四虎| 国产91视频在线 | 欧美成人午夜免费视在线看片 | 欧美一区二区三区粗大 | 天天躁夜夜操 | 亚洲淫| 午夜电影在线播放 | 蜜桃av噜噜一区二区三区 | 无码国产69精品久久久久同性 | 国产96在线 | 亚洲 | 少妇一级淫片免费观看 | 烈性摔跤| 国产精品久久久久久久久久久久 | 久久国产精彩视频 | 羞羞草影院 | 欧美日韩人妻一区二区 | 国产一区视频在线免费观看 | 日日操夜夜操狠狠操 | 丝袜美女被c | 日本黄色小视频 | 亚洲福利午夜 | 欧美性免费 | 国产小视频在线 | 综合婷婷 | 北条麻妃久久精品 | 欧美一区二区三区四区五区 | 欧美高潮视频 | 黄色草逼网站 | 免费久久网站 | 自拍视频网址 | 中国妇女做爰视频 | 进去里在线观看 | 青青草操 | 国产天天综合 | 超碰青草 | 免费看的黄色小视频 |