日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

opencv 人脸识别 (二)训练和识别

發(fā)布時間:2025/3/21 pytorch 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 opencv 人脸识别 (二)训练和识别 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

上一篇中我們對訓(xùn)練數(shù)據(jù)做了一些預(yù)處理,檢測出人臉并保存在\pic\color\x文件夾下(x=1,2,3,...類別號),本文做訓(xùn)練和識別。為了識別,首先將人臉訓(xùn)練數(shù)據(jù) 轉(zhuǎn)為灰度、對齊、歸一化,再放入分類器(EigenFaceRecognizer),最后用訓(xùn)練出的model進行predict。


-----------------------------------------


環(huán)境:vs2010+opencv 2.4.6.0

特征:eigenface

Input:一個人臉數(shù)據(jù)庫,15個人,每人20個樣本(左右)。

Output:人臉檢測,并識別出每張檢測到的人臉。


-----------------------------------------


1. 為訓(xùn)練數(shù)據(jù)預(yù)處理(?轉(zhuǎn)為灰度、對齊、歸一化?)

  • 轉(zhuǎn)為灰度和對齊是后面做訓(xùn)練時EigenFaceRecognizer的要求;
  • 歸一化是防止光照帶來的影響

在上一篇的?2.2 Prehelper.cpp文件中加入函數(shù)

void resizeandtogray(char* dir,int k,? vector<Mat> &images, vector<int> &labels,
vector<Mat> &testimages, vector<int> &testlabels);


[cpp]?view plaincopy
  • void?resizeandtogray(char*?dir,int?K,?vector<Mat>?&images,?vector<int>?&labels,??
  • ????vector<Mat>?&testimages,?vector<int>?&testlabels)??
  • {??
  • ????IplImage*?standard?=?cvLoadImage("D:\\privacy\\picture\\photo\\2.jpg",CV_LOAD_IMAGE_GRAYSCALE);??
  • ????string?cur_dir;??
  • ????char?id[5];??
  • ????int?i,j;??
  • ????for(int?i=1;?i<=K;?i++)??
  • ????{??
  • ????????cur_dir?=?dir;??
  • ????????cur_dir.append("gray\\");?????
  • ????????_itoa(i,id,10);??
  • ????????cur_dir.append(id);??
  • ????????const?char*?dd?=?cur_dir.c_str();??
  • ????????CStatDir?statdir;??
  • ????????if?(!statdir.SetInitDir(dd))??
  • ????????{??
  • ????????????puts("Dir?not?exist");??
  • ????????????return;??
  • ????????}??
  • ????????cout<<"Processing?samples?in?Class?"<<i<<endl;??
  • ????????vector<char*>file_vec?=?statdir.BeginBrowseFilenames("*.*");??
  • ????????for?(j=0;j<file_vec.size();j++)??
  • ????????{??
  • ????????????IplImage*?cur_img?=?cvLoadImage(file_vec[j],CV_LOAD_IMAGE_GRAYSCALE);??
  • ????????????cvResize(cur_img,standard,CV_INTER_AREA);??
  • ????????????Mat?cur_mat?=?cvarrToMat(standard,true),des_mat;??
  • ????????????cv::normalize(cur_mat,des_mat,0,?255,?NORM_MINMAX,?CV_8UC1);??
  • ????????????cvSaveImage(file_vec[j],cvCloneImage(&(IplImage)?des_mat));??
  • ????????????if(j!=file_vec.size())??
  • ????????????{??
  • ????????????????????images.push_back(des_mat);??
  • ????????????????????labels.push_back(i);??
  • ????????????}??
  • ????????????else??
  • ????????????{??
  • ????????????????testimages.push_back(des_mat);??
  • ????????????????testlabels.push_back(i);??
  • ????????????}??
  • ????????}??
  • ????????cout<<file_vec.size()<<"?images."<<endl;??
  • ????}??
  • }??



  • 并在main中調(diào)用:

    [cpp]?view plaincopy
  • int?main(?)??
  • {??
  • ????CvCapture*?capture?=?0;??
  • ????Mat?frame,?frameCopy,?image;??
  • ????string?inputName;?????
  • ????int?mode;??
  • ??
  • ????char?dir[256]?=?"D:\\Courses\\CV\\Face_recognition\\pic\\";???
  • ????//preprocess_trainingdata(dir,K);?//face_detection?and?extract?to?file??
  • ????vector<Mat>?images,testimages;??
  • ????vector<int>?labels,testlabels;??
  • ????resizeandtogray(dir,K,images,labels,testimages,testlabels);?//togray,?normalize?and?resize??
  • ??????
  • ????system("pause");??
  • ????return?0;??
  • }??




  • 2. 訓(xùn)練

    有了vector<Mat> images,testimages; vector<int> labels,testlabels; 可以開始訓(xùn)練了,我們采用EigenFaceRecognizer建模。

    在Prehelper.cpp中加入函數(shù)

    Ptr<FaceRecognizer> Recognition(vector<Mat> images, vector<int> labels,vector<Mat> testimages, vector<int> testlabels);


    [cpp]?view plaincopy
  • Ptr<FaceRecognizer>?Recognition(vector<Mat>?images,?vector<int>?labels,??
  • ????vector<Mat>?testimages,?vector<int>?testlabels)??
  • {??
  • ????Ptr<FaceRecognizer>?model?=?createEigenFaceRecognizer(10);//10?Principal?components??
  • ????cout<<"train"<<endl;??
  • ????model->train(images,labels);??
  • ????int?i,acc=0,predict_l;??
  • ????for?(i=0;i<testimages.size();i++)??
  • ????{??
  • ????????predict_l?=?model->predict(testimages[i]);??
  • ????????if(predict_l?!=?testlabels[i])??
  • ????????{??
  • ????????????cout<<"An?error?in?recognition:?sample?"<<i+1<<",?predict?"<<??
  • ????????????????predict_l<<",?groundtruth?"<<testlabels[i]<<endl;??
  • ????????????imshow("error?1",testimages[i]);??
  • ????????????waitKey();??
  • ????????}??
  • ????????else??
  • ????????????acc++;??
  • ????}??
  • ????cout<<"Recognition?Rate:?"<<acc*1.0/testimages.size()<<endl;??
  • ????return?model;??
  • }??



  • Recognization()輸出分錯的樣本和正確率,最后返回建模結(jié)果Ptr<FaceRecognizer> model


    主函數(shù)改為:

    [cpp]?view plaincopy
  • int?main(?)??
  • {??
  • ????CvCapture*?capture?=?0;??
  • ????Mat?frame,?frameCopy,?image;??
  • ????string?inputName;?????
  • ????int?mode;??
  • ??
  • ????char?dir[256]?=?"D:\\Courses\\CV\\Face_recognition\\pic\\";???
  • ????//preprocess_trainingdata(dir,K);?//face_detection?and?extract?to?file??
  • ????vector<Mat>?images,testimages;??
  • ????vector<int>?labels,testlabels;??
  • ????//togray,?normalize?and?resize;?load?to?images,labels,testimages,testlabels??
  • ????resizeandtogray(dir,K,images,labels,testimages,testlabels);???
  • ????//recognition??
  • ????Ptr<FaceRecognizer>?model?=?Recognition(images,labels,testimages,testlabels);??
  • ????char*?dirmodel?=?new?char?[256];??
  • ????strcpy(dirmodel,dir);?strcat(dirmodel,"model.out");??
  • ????FILE*?f?=?fopen(dirmodel,"w");??
  • ????fwrite(model,sizeof(model),1,f);??
  • ????system("pause");??
  • ????return?0;??
  • }??



  • 最終結(jié)果:一個錯分樣本,正確率93.3%





    文章所用代碼打包鏈接:http://download.csdn.net/detail/abcjennifer/7047853


    from:?http://blog.csdn.net/abcjennifer/article/details/20446077

    總結(jié)

    以上是生活随笔為你收集整理的opencv 人脸识别 (二)训练和识别的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。