日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人工智能 > 目标检测 >内容正文

目标检测

CV之YOLOv3:基于Tensorflow框架利用YOLOv3算法对热播新剧《庆余年》实现目标检测

發(fā)布時間:2025/3/21 目标检测 68 豆豆
生活随笔 收集整理的這篇文章主要介紹了 CV之YOLOv3:基于Tensorflow框架利用YOLOv3算法对热播新剧《庆余年》实现目标检测 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

CV之YOLOv3:基于Tensorflow框架利用YOLOv3算法對熱播新劇《慶余年》實現(xiàn)目標(biāo)檢測

?

?

目錄

搭建

1、下載代碼

2、安裝依賴庫

3、導(dǎo)出COCO權(quán)重解壓到checkpoint文件夾內(nèi)

4、測試


?

?

搭建

1、下載代碼

tensorflow-yolov3

2、安裝依賴庫

pip install -r ./docs/requirements.txt

3、導(dǎo)出COCO權(quán)重解壓到checkpoint文件夾內(nèi)

Exporting loaded COCO weights as TF checkpoint(yolov3_coco.ckpt

python convert_weight.py
python freeze_graph.py

?

4、測試

?

2019-12-25 15:05:02.766745: I => yolov3/darknet-53/Conv/weights (3, 3, 3, 32) => yolov3/darknet-53/Conv/BatchNorm/gamma (32,) => yolov3/darknet-53/Conv/BatchNorm/beta (32,) => yolov3/darknet-53/Conv/BatchNorm/moving_mean (32,) => yolov3/darknet-53/Conv/BatchNorm/moving_variance (32,) => yolov3/darknet-53/Conv_1/weights (3, 3, 32, 64) => yolov3/darknet-53/Conv_1/BatchNorm/gamma (64,) => yolov3/darknet-53/Conv_1/BatchNorm/beta (64,) => yolov3/darknet-53/Conv_1/BatchNorm/moving_mean (64,) => yolov3/darknet-53/Conv_1/BatchNorm/moving_variance (64,) => yolov3/darknet-53/Conv_2/weights (1, 1, 64, 32) => yolov3/darknet-53/Conv_2/BatchNorm/gamma (32,) => yolov3/darknet-53/Conv_2/BatchNorm/beta (32,) => yolov3/darknet-53/Conv_2/BatchNorm/moving_mean (32,) => yolov3/darknet-53/Conv_2/BatchNorm/moving_variance (32,) => yolov3/darknet-53/Conv_3/weights (3, 3, 32, 64) => yolov3/darknet-53/Conv_3/BatchNorm/gamma (64,) => yolov3/darknet-53/Conv_3/BatchNorm/beta (64,) => yolov3/darknet-53/Conv_3/BatchNorm/moving_mean (64,) => yolov3/darknet-53/Conv_3/BatchNorm/moving_variance (64,) => yolov3/darknet-53/Conv_4/weights (3, 3, 64, 128) => yolov3/darknet-53/Conv_4/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_4/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_4/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_4/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_5/weights (1, 1, 128, 64) => yolov3/darknet-53/Conv_5/BatchNorm/gamma (64,) => yolov3/darknet-53/Conv_5/BatchNorm/beta (64,) => yolov3/darknet-53/Conv_5/BatchNorm/moving_mean (64,) => yolov3/darknet-53/Conv_5/BatchNorm/moving_variance (64,) => yolov3/darknet-53/Conv_6/weights (3, 3, 64, 128) => yolov3/darknet-53/Conv_6/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_6/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_6/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_6/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_7/weights (1, 1, 128, 64) => yolov3/darknet-53/Conv_7/BatchNorm/gamma (64,) => yolov3/darknet-53/Conv_7/BatchNorm/beta (64,) => yolov3/darknet-53/Conv_7/BatchNorm/moving_mean (64,) => yolov3/darknet-53/Conv_7/BatchNorm/moving_variance (64,) => yolov3/darknet-53/Conv_8/weights (3, 3, 64, 128) => yolov3/darknet-53/Conv_8/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_8/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_8/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_8/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_9/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_9/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_9/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_9/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_9/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_10/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_10/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_10/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_10/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_10/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_11/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_11/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_11/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_11/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_11/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_12/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_12/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_12/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_12/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_12/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_13/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_13/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_13/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_13/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_13/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_14/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_14/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_14/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_14/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_14/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_15/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_15/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_15/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_15/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_15/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_16/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_16/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_16/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_16/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_16/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_17/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_17/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_17/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_17/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_17/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_18/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_18/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_18/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_18/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_18/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_19/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_19/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_19/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_19/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_19/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_20/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_20/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_20/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_20/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_20/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_21/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_21/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_21/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_21/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_21/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_22/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_22/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_22/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_22/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_22/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_23/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_23/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_23/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_23/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_23/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_24/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_24/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_24/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_24/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_24/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_25/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_25/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_25/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_25/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_25/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_26/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_26/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_26/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_26/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_26/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_27/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_27/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_27/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_27/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_27/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_28/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_28/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_28/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_28/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_28/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_29/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_29/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_29/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_29/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_29/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_30/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_30/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_30/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_30/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_30/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_31/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_31/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_31/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_31/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_31/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_32/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_32/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_32/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_32/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_32/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_33/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_33/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_33/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_33/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_33/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_34/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_34/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_34/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_34/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_34/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_35/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_35/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_35/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_35/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_35/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_36/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_36/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_36/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_36/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_36/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_37/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_37/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_37/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_37/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_37/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_38/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_38/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_38/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_38/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_38/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_39/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_39/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_39/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_39/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_39/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_40/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_40/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_40/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_40/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_40/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_41/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_41/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_41/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_41/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_41/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_42/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_42/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_42/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_42/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_42/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_43/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_43/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_43/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_43/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_43/BatchNorm/moving_variance (1024,) => yolov3/darknet-53/Conv_44/weights (1, 1, 1024, 512) => yolov3/darknet-53/Conv_44/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_44/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_44/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_44/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_45/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_45/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_45/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_45/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_45/BatchNorm/moving_variance (1024,) => yolov3/darknet-53/Conv_46/weights (1, 1, 1024, 512) => yolov3/darknet-53/Conv_46/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_46/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_46/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_46/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_47/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_47/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_47/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_47/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_47/BatchNorm/moving_variance (1024,) => yolov3/darknet-53/Conv_48/weights (1, 1, 1024, 512) => yolov3/darknet-53/Conv_48/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_48/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_48/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_48/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_49/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_49/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_49/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_49/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_49/BatchNorm/moving_variance (1024,) => yolov3/darknet-53/Conv_50/weights (1, 1, 1024, 512) => yolov3/darknet-53/Conv_50/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_50/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_50/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_50/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_51/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_51/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_51/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_51/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_51/BatchNorm/moving_variance (1024,) => yolov3/yolo-v3/Conv/weights (1, 1, 1024, 512) => yolov3/yolo-v3/Conv/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_1/weights (3, 3, 512, 1024) => yolov3/yolo-v3/Conv_1/BatchNorm/gamma (1024,) => yolov3/yolo-v3/Conv_1/BatchNorm/beta (1024,) => yolov3/yolo-v3/Conv_1/BatchNorm/moving_mean (1024,) => yolov3/yolo-v3/Conv_1/BatchNorm/moving_variance (1024,) => yolov3/yolo-v3/Conv_2/weights (1, 1, 1024, 512) => yolov3/yolo-v3/Conv_2/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_2/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_2/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_2/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_3/weights (3, 3, 512, 1024) => yolov3/yolo-v3/Conv_3/BatchNorm/gamma (1024,) => yolov3/yolo-v3/Conv_3/BatchNorm/beta (1024,) => yolov3/yolo-v3/Conv_3/BatchNorm/moving_mean (1024,) => yolov3/yolo-v3/Conv_3/BatchNorm/moving_variance (1024,) => yolov3/yolo-v3/Conv_4/weights (1, 1, 1024, 512) => yolov3/yolo-v3/Conv_4/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_4/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_4/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_4/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_5/weights (3, 3, 512, 1024) => yolov3/yolo-v3/Conv_5/BatchNorm/gamma (1024,) => yolov3/yolo-v3/Conv_5/BatchNorm/beta (1024,) => yolov3/yolo-v3/Conv_5/BatchNorm/moving_mean (1024,) => yolov3/yolo-v3/Conv_5/BatchNorm/moving_variance (1024,) => yolov3/yolo-v3/Conv_6/weights (1, 1, 1024, 255) => yolov3/yolo-v3/Conv_6/biases (255,) => yolov3/yolo-v3/Conv_7/weights (1, 1, 512, 256) => yolov3/yolo-v3/Conv_7/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_7/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_7/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_7/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_8/weights (1, 1, 768, 256) => yolov3/yolo-v3/Conv_8/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_8/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_8/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_8/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_9/weights (3, 3, 256, 512) => yolov3/yolo-v3/Conv_9/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_9/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_9/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_9/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_10/weights (1, 1, 512, 256) => yolov3/yolo-v3/Conv_10/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_10/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_10/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_10/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_11/weights (3, 3, 256, 512) => yolov3/yolo-v3/Conv_11/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_11/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_11/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_11/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_12/weights (1, 1, 512, 256) => yolov3/yolo-v3/Conv_12/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_12/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_12/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_12/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_13/weights (3, 3, 256, 512) => yolov3/yolo-v3/Conv_13/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_13/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_13/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_13/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_14/weights (1, 1, 512, 255) => yolov3/yolo-v3/Conv_14/biases (255,) => yolov3/yolo-v3/Conv_15/weights (1, 1, 256, 128) => yolov3/yolo-v3/Conv_15/BatchNorm/gamma (128,) => yolov3/yolo-v3/Conv_15/BatchNorm/beta (128,) => yolov3/yolo-v3/Conv_15/BatchNorm/moving_mean (128,) => yolov3/yolo-v3/Conv_15/BatchNorm/moving_variance (128,) => yolov3/yolo-v3/Conv_16/weights (1, 1, 384, 128) => yolov3/yolo-v3/Conv_16/BatchNorm/gamma (128,) => yolov3/yolo-v3/Conv_16/BatchNorm/beta (128,) => yolov3/yolo-v3/Conv_16/BatchNorm/moving_mean (128,) => yolov3/yolo-v3/Conv_16/BatchNorm/moving_variance (128,) => yolov3/yolo-v3/Conv_17/weights (3, 3, 128, 256) => yolov3/yolo-v3/Conv_17/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_17/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_17/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_17/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_18/weights (1, 1, 256, 128) => yolov3/yolo-v3/Conv_18/BatchNorm/gamma (128,) => yolov3/yolo-v3/Conv_18/BatchNorm/beta (128,) => yolov3/yolo-v3/Conv_18/BatchNorm/moving_mean (128,) => yolov3/yolo-v3/Conv_18/BatchNorm/moving_variance (128,) => yolov3/yolo-v3/Conv_19/weights (3, 3, 128, 256) => yolov3/yolo-v3/Conv_19/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_19/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_19/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_19/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_20/weights (1, 1, 256, 128) => yolov3/yolo-v3/Conv_20/BatchNorm/gamma (128,) => yolov3/yolo-v3/Conv_20/BatchNorm/beta (128,) => yolov3/yolo-v3/Conv_20/BatchNorm/moving_mean (128,) => yolov3/yolo-v3/Conv_20/BatchNorm/moving_variance (128,) => yolov3/yolo-v3/Conv_21/weights (3, 3, 128, 256) => yolov3/yolo-v3/Conv_21/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_21/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_21/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_21/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_22/weights (1, 1, 256, 255) => yolov3/yolo-v3/Conv_22/biases (255,)

?

Tensor("conv_sbbox/BiasAdd:0", shape=(?, ?, ?, 255), dtype=float32) Tensor("conv_mbbox/BiasAdd:0", shape=(?, ?, ?, 255), dtype=float32) Tensor("conv_lbbox/BiasAdd:0", shape=(?, ?, ?, 255), dtype=float32)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

總結(jié)

以上是生活随笔為你收集整理的CV之YOLOv3:基于Tensorflow框架利用YOLOv3算法对热播新剧《庆余年》实现目标检测的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。