日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

ML之xgboostGBM:基于xgboostGBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测

發(fā)布時(shí)間:2025/3/21 编程问答 15 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ML之xgboostGBM:基于xgboostGBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

ML之xgboost&GBM:基于xgboost&GBM算法對(duì)HiggsBoson數(shù)據(jù)集(Kaggle競(jìng)賽)訓(xùn)練(兩模型性能PK)實(shí)現(xiàn)二分類預(yù)測(cè)

?

?

?

目錄

輸出結(jié)果

設(shè)計(jì)思路

核心代碼


?

?

?

輸出結(jié)果



finish loading from csv weight statistics: wpos=1522.37, wneg=904200, ratio=593.94loading data end, start to boost trees training GBM from sklearnIter Train Loss Remaining Time 1 1.2069 49.52s2 1.1437 43.51s3 1.0909 37.43s4 1.0471 30.96s5 1.0096 25.09s6 0.9775 19.90s7 0.9505 15.22s8 0.9264 9.94s9 0.9058 4.88s10 0.8878 0.00s sklearn.GBM total costs: 50.88141202926636 secondstraining xgboost [0] train-ams@0.15:3.69849 [1] train-ams@0.15:3.96339 [2] train-ams@0.15:4.26978 [3] train-ams@0.15:4.32619 [4] train-ams@0.15:4.41415 [5] train-ams@0.15:4.49395 [6] train-ams@0.15:4.64614 [7] train-ams@0.15:4.64058 [8] train-ams@0.15:4.73064 [9] train-ams@0.15:4.79447 XGBoost with 1 thread costs: 24.5108642578125 seconds [0] train-ams@0.15:3.69849 [1] train-ams@0.15:3.96339 [2] train-ams@0.15:4.26978 [3] train-ams@0.15:4.32619 [4] train-ams@0.15:4.41415 [5] train-ams@0.15:4.49395 [6] train-ams@0.15:4.64614 [7] train-ams@0.15:4.64058 [8] train-ams@0.15:4.73064 [9] train-ams@0.15:4.79447 XGBoost with 2 thread costs: 11.449955940246582 seconds [0] train-ams@0.15:3.69849 [1] train-ams@0.15:3.96339 [2] train-ams@0.15:4.26978 [3] train-ams@0.15:4.32619 [4] train-ams@0.15:4.41415 [5] train-ams@0.15:4.49395 [6] train-ams@0.15:4.64614 [7] train-ams@0.15:4.64058 [8] train-ams@0.15:4.73064 [9] train-ams@0.15:4.79447 XGBoost with 4 thread costs: 8.809934616088867 seconds [0] train-ams@0.15:3.69849 [1] train-ams@0.15:3.96339 [2] train-ams@0.15:4.26978 [3] train-ams@0.15:4.32619 [4] train-ams@0.15:4.41415 [5] train-ams@0.15:4.49395 [6] train-ams@0.15:4.64614 [7] train-ams@0.15:4.64058 [8] train-ams@0.15:4.73064 [9] train-ams@0.15:4.79447 XGBoost with 8 thread costs: 7.875434875488281 seconds XGBoost total costs: 52.64618968963623 seconds

?

設(shè)計(jì)思路

?

?

?

?

核心代碼

?

?

?

?

總結(jié)

以上是生活随笔為你收集整理的ML之xgboostGBM:基于xgboostGBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。