日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

發布時間:2025/3/21 编程问答 67 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)訓練mushroom蘑菇數據集(22+1,6513+1611)來預測蘑菇是否毒性(二分類預測)

?

?

目錄

輸出結果

設計思路

核心代碼

更多輸出


?

?

?

?

輸出結果

正在更新……

?

設計思路

正在更新……

?

核心代碼

from sklearn.grid_search import GridSearchCVparam_test = { 'n_estimators': range(1, 51, 1)} clf = GridSearchCV(estimator = bst, param_grid = param_test, cv=5) clf.fit(X_train, y_train) clf.grid_scores_, clf.best_params_, clf.best_score_grid_scores_mean= [0.90542, 0.94749, 0.90542, 0.94749, 0.90573, 0.94718, 0.90542, 0.94242, 0.94473, 0.97482, 0.94887, 0.97850, 0.97298, 0.97850, 0.97298, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97804, 0.97774, 0.97835, 0.98296, 0.98419, 0.98342, 0.98372, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419 ]grid_scores_std = [0.08996, 0.07458, 0.08996, 0.07458, 0.09028, 0.07436, 0.08996, 0.07331, 0.07739, 0.02235, 0.07621, 0.02387, 0.03186, 0.02387, 0.03186, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02365, 0.02337, 0.02383, 0.01963, 0.02040, 0.01988, 0.02008, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040 ]#7-CrVa交叉驗證曲線可視化 import matplotlib.pyplot as pltx = range(0,len(grid_scores_mean)) y1 = grid_scores_mean y2 = grid_scores_std Xlabel = 'n_estimators' Ylabel = 'value' title = 'mushroom datase: xgboost(sklearn+GridSearchCV) model'plt.plot(x,y1,'r',label='Mean') #繪制mean曲線 plt.plot(x,y2,'g',label='Std') #繪制std曲線plt.rcParams['font.sans-serif']=['Times New Roman'] #手動添加中文字體,或者['font.sans-serif'] = ['FangSong'] SimHei #myfont = matplotlib.font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttf') #也可以指定win系統字體路徑 plt.rcParams['axes.unicode_minus'] = False #對坐標軸的負號進行正常顯示plt.xlabel(Xlabel) plt.ylabel(Ylabel) plt.title(title)plt.legend(loc=1) plt.show()

?

更多輸出

GridSearchCV time: 79.7655139499154 clf.grid_scores_: [mean: 0.90542, std: 0.08996, params: {'n_estimators': 1}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 2}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 3}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 4}, mean: 0.90573, std: 0.09028, params: {'n_estimators': 5}, mean: 0.94718, std: 0.07436, params: {'n_estimators': 6}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 7}, mean: 0.94242, std: 0.07331, params: {'n_estimators': 8}, mean: 0.94473, std: 0.07739, params: {'n_estimators': 9}, mean: 0.97482, std: 0.02235, params: {'n_estimators': 10}, mean: 0.94887, std: 0.07621, params: {'n_estimators': 11}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 12}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 13}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 14}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 15}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 16}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 17}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 18}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 19}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 20}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 21}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 22}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 23}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 24}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 25}, mean: 0.97804, std: 0.02365, params: {'n_estimators': 26}, mean: 0.97774, std: 0.02337, params: {'n_estimators': 27}, mean: 0.97835, std: 0.02383, params: {'n_estimators': 28}, mean: 0.98296, std: 0.01963, params: {'n_estimators': 29}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 30}, mean: 0.98342, std: 0.01988, params: {'n_estimators': 31}, mean: 0.98372, std: 0.02008, params: {'n_estimators': 32}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 33}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 34}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 35}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 36}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 37}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 38}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 39}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 40}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 41}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 42}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 43}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 44}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 45}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 46}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 47}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 48}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 49}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 50}] clf.best_params_: {'n_estimators': 30} clf.best_score_: 0.9841854752034392 [mean: 0.90542, std: 0.08996, params: {'n_estimators': 1}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 2}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 3}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 4}, mean: 0.90573, std: 0.09028, params: {'n_estimators': 5}, mean: 0.94718, std: 0.07436, params: {'n_estimators': 6}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 7}, mean: 0.94242, std: 0.07331, params: {'n_estimators': 8}, mean: 0.94473, std: 0.07739, params: {'n_estimators': 9}, mean: 0.97482, std: 0.02235, params: {'n_estimators': 10}, mean: 0.94887, std: 0.07621, params: {'n_estimators': 11}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 12}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 13}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 14}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 15}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 16}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 17}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 18}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 19}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 20}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 21}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 22}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 23}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 24}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 25}, mean: 0.97804, std: 0.02365, params: {'n_estimators': 26}, mean: 0.97774, std: 0.02337, params: {'n_estimators': 27}, mean: 0.97835, std: 0.02383, params: {'n_estimators': 28}, mean: 0.98296, std: 0.01963, params: {'n_estimators': 29}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 30}, mean: 0.98342, std: 0.01988, params: {'n_estimators': 31}, mean: 0.98372, std: 0.02008, params: {'n_estimators': 32}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 33}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 34}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 35}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 36}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 37}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 38}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 39}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 40}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 41}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 42}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 43}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 44}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 45}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 46}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 47}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 48}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 49}]grid_scores_ = [mean: 0.90542, std: 0.08996, mean: 0.94749, std: 0.07458, mean: 0.90542, std: 0.08996, mean: 0.94749, std: 0.07458, mean: 0.90573, std: 0.09028, mean: 0.94718, std: 0.07436,mean: 0.90542, std: 0.08996, mean: 0.94242, std: 0.07331, mean: 0.94473, std: 0.07739, mean: 0.97482, std: 0.02235,mean: 0.94887, std: 0.07621, mean: 0.97850, std: 0.02387, mean: 0.97298, std: 0.03186, mean: 0.97850, std: 0.02387, mean: 0.97298, std: 0.03186, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387,mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387,mean: 0.97804, std: 0.02365, mean: 0.97774, std: 0.02337, mean: 0.97835, std: 0.02383, mean: 0.98296, std: 0.01963, mean: 0.98419, std: 0.02040, mean: 0.98342, std: 0.01988, mean: 0.98372, std: 0.02008, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040 ]

?

總結

以上是生活随笔為你收集整理的ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 51啪影院| 男人亚洲天堂 | 欧美高清日韩 | 国产第99页 | 在线观看国产小视频 | 日日日噜噜噜 | 亚洲成人一区二区在线观看 | 精品女厕偷拍一区二区 | 国产在线观看免费视频今夜 | 少妇性l交大片 | 亚洲日本网站 | 另类视频一区 | 91一区视频 | 国产一区免费 | 国产又爽又黄又嫩又猛又粗 | 中文字幕人妻精品一区 | 一级特黄欧美 | 久久久久影视 | 欧美性啪啪 | 香蕉视频一级 | 亚洲久热 | 欧美图片自拍偷拍 | 极品另类 | 亚洲视频色图 | 亚洲国产成人精品91久久久 | 午夜视频网站在线观看 | 亚洲精品一区三区三区在线观看 | 免费高清视频一区二区三区 | 婷婷色婷婷 | 性欢交69国产精品 | 黄色国产一区二区 | 中日韩黄色大片 | 天天干一干 | 亚洲av无码潮喷在线观看 | 国产精品少妇 | 激情五月婷婷 | 香蕉国产精品视频 | 激情视频国产 | 97综合网| 中文在线а√在线 | www.四虎在线观看 | 日本网站在线播放 | 九九亚洲 | 国产二级片| 免费观看一级黄色片 | 免费的三级网站 | 夜夜艹天天干 | 成人免费版欧美州 | 成人精品黄段子 | 性歌舞团一区二区三区视频 | 国产99在线观看 | 精品视频久久久久久久 | 亚洲iv一区二区三区 | 国产成人精品无码片区在线 | 久久精品国产清自在天天线 | 做暧暧视频在线观看 | 日本黄视频在线观看 | 国产超碰人人模人人爽人人添 | 国产成人97精品免费看片 | a级大片免费看 | 韩国一级淫一片免费放 | 国产中文字幕在线播放 | 色a视频 | 美女狂揉羞羞的视频 | 欧美日韩久 | 日韩精品1区 | 国产精品theporn88 | 亚洲一区二区国产精品 | 性xxxx另类xxⅹ | www.com捏胸挤出奶 | 五月天一区二区三区 | 久草视频福利在线 | 欧美乱三级 | 日本人妻一区二区三区 | 五月深爱 | 色精品视频 | 日韩操操操 | 男人天堂一区二区 | 黑人vs亚洲人在线播放 | 亚洲精选av | 久久久免费高清视频 | 久久裸体视频 | 成全世界免费高清观看 | 黄色污小说 | 国产麻豆久久 | 天堂av在线资源 | 狠狠干快播 | 粉嫩av一区二区三区 | 91国模少妇一区二区三区 | 成人欧美一区二区三区在线播放 | 老女人一区 | 日本福利视频一区 | 黄色激情毛片 | 久久草国产 | 久久久久久网址 | xxxxwwww国产 | 亚洲精品77777 | 狠狠撸在线 | 亚洲成a人片在线 |