日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ML之LiR2PolyR4PolyR:使用线性回归LiR、二次多项式回归2PolyR、四次多项式回归4PolyR模型在披萨数据集上拟合(train)、价格回归预测(test)

發布時間:2025/3/21 编程问答 22 豆豆

ML之LiR&2PolyR&4PolyR:使用線性回歸LiR、二次多項式回歸2PolyR、四次多項式回歸4PolyR模型在披薩數據集上擬合(train)、價格回歸預測(test)

?

?

目錄

輸出結果

設計思路

核心代碼


?

?

?

輸出結果

?

?

?

設計思路

?

核心代碼

poly4 = PolynomialFeatures(degree=4) X_train_poly4 = poly4.fit_transform(X_train)r_poly4 = LinearRegression() r_poly4 .fit(X_train_poly4, y_train)x_poly4 = poly4.transform(xx) poly4 = r_poly4 .predict(xx_poly4) class PolynomialFeatures(BaseEstimator, TransformerMixin):"""Generate polynomial and interaction features.Generate a new feature matrix consisting of all polynomial combinationsof the features with degree less than or equal to the specified degree.For example, if an input sample is two dimensional and of the form[a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2].Parameters----------degree : integerThe degree of the polynomial features. Default = 2.interaction_only : boolean, default = FalseIf true, only interaction features are produced: features that areproducts of at most ``degree`` *distinct* input features (so not``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.).include_bias : booleanIf True (default), then include a bias column, the feature in whichall polynomial powers are zero (i.e. a column of ones - acts as anintercept term in a linear model).Examples-------->>> X = np.arange(6).reshape(3, 2)>>> Xarray([[0, 1],[2, 3],[4, 5]])>>> poly = PolynomialFeatures(2)>>> poly.fit_transform(X)array([[ 1., 0., 1., 0., 0., 1.],[ 1., 2., 3., 4., 6., 9.],[ 1., 4., 5., 16., 20., 25.]])>>> poly = PolynomialFeatures(interaction_only=True)>>> poly.fit_transform(X)array([[ 1., 0., 1., 0.],[ 1., 2., 3., 6.],[ 1., 4., 5., 20.]])Attributes----------powers_ : array, shape (n_output_features, n_input_features)powers_[i, j] is the exponent of the jth input in the ith output.n_input_features_ : intThe total number of input features.n_output_features_ : intThe total number of polynomial output features. The number of outputfeatures is computed by iterating over all suitably sized combinationsof input features.Notes-----Be aware that the number of features in the output array scalespolynomially in the number of features of the input array, andexponentially in the degree. High degrees can cause overfitting.See :ref:`examples/linear_model/plot_polynomial_interpolation.py<sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>`"""def __init__(self, degree=2, interaction_only=False, include_bias=True):self.degree = degreeself.interaction_only = interaction_onlyself.include_bias = include_bias@staticmethoddef _combinations(n_features, degree, interaction_only, include_bias):comb = combinations if interaction_only else combinations_w_rstart = int(not include_bias)return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1))@propertydef powers_(self):check_is_fitted(self, 'n_input_features_')combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias)return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations)def get_feature_names(self, input_features=None):"""Return feature names for output featuresParameters----------input_features : list of string, length n_features, optionalString names for input features if available. By default,"x0", "x1", ... "xn_features" is used.Returns-------output_feature_names : list of string, length n_output_features"""powers = self.powers_if input_features is None:input_features = ['x%d' % i for i in range(powers.shape[1])]feature_names = []for row in powers:inds = np.where(row)[0]if len(inds):name = " ".join("%s^%d" % (input_features[ind], exp) if exp != 1 else input_features[ind] for (ind, exp) in zip(inds, row[inds]))else:name = "1"feature_names.append(name)return feature_namesdef fit(self, X, y=None):"""Compute number of output features.Parameters----------X : array-like, shape (n_samples, n_features)The data.Returns-------self : instance"""n_samples, n_features = check_array(X).shapecombinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias)self.n_input_features_ = n_featuresself.n_output_features_ = sum(1 for _ in combinations)return selfdef transform(self, X):"""Transform data to polynomial featuresParameters----------X : array-like, shape [n_samples, n_features]The data to transform, row by row.Returns-------XP : np.ndarray shape [n_samples, NP]The matrix of features, where NP is the number of polynomialfeatures generated from the combination of inputs."""check_is_fitted(self, ['n_input_features_', 'n_output_features_'])X = check_array(X, dtype=FLOAT_DTYPES)n_samples, n_features = X.shapeif n_features != self.n_input_features_:raise ValueError("X shape does not match training shape")# allocate output dataXP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype)combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias)for i, c in enumerate(combinations)::i]XP[ = X[:c].prod(1)return XP

?

?

總結

以上是生活随笔為你收集整理的ML之LiR2PolyR4PolyR:使用线性回归LiR、二次多项式回归2PolyR、四次多项式回归4PolyR模型在披萨数据集上拟合(train)、价格回归预测(test)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 91亚洲欧美激情 | 成人字幕 | 精品一卡二卡 | 香蕉视频| 亚洲人xxx | 中文字幕乱码中文乱码777 | 8050午夜二级 | 成人av国产 | 在线观看欧美一区二区三区 | 殴美一级视频 | 在线成人国产 | 亚洲精品6 | 神马三级我不卡 | 欧美日韩在线播放视频 | 国产精品96久久久久久 | 亚州av综合色区无码一区 | 亚洲大片免费观看 | 亚洲网站色 | 国产亚洲女人久久久久毛片 | 亚洲最大中文字幕 | 亚洲第一国产 | 国产做爰全过程免费视频 | 日韩一区二区三区四区在线 | 色偷偷久久| 中韩毛片 | 91重口味| 五十路在线观看 | 欧美人与性动交g欧美精器 国产在线视频91 | 国产xxxx在线观看 | 午夜av免费在线观看 | 日xxxx| 欧美三级午夜理伦三级小说 | 欧美激情视频一区 | 国产第一毛片 | 日韩亚洲第一页 | 欧美日韩不卡在线 | 噜噜色网 | 四虎一区二区三区 | 一级黄色片免费 | 国产在线日本 | 欧美日韩人妻精品一区在线 | 精品国产精品国产偷麻豆 | 波多野结衣视频在线观看 | 欧美天堂一区 | 精品无码黑人又粗又大又长 | 乌克兰av在线 | 国产情侣呻吟对白高潮 | 狼人av在线 | 日本zzjj | 国产乱一区二区三区 | 91污网站| 97超碰免费| 日本精品不卡 | av色区| 美女100%露胸无遮挡 | 国产乱xxⅹxx国语对白 | 日韩制服在线 | 99免费| 国产情侣一区二区三区 | 激情综合网站 | 久久久久国产视频 | 婷婷的五月天 | 亚洲精品在线电影 | 一区三区在线观看 | 欧美日韩在线一区 | 九九九国产视频 | 国产cao| 亚洲综合网在线观看 | 成人h动漫精品一区二区器材 | 99热精品在线播放 | 国产第一福利影院 | 深夜网站在线观看 | 国产精品97 | 综合色婷婷一区二区亚洲欧美国产 | av黄色小说 | 2019天天干 | 日韩一区在线播放 | 国产黄色免费网站 | 成年人免费在线观看 | 夜夜精品一区二区无码 | 337p粉嫩日本欧洲亚洲大胆 | 一区二区视频网站 | 在线一区二区三区视频 | 色噜噜网站 | 国产精品免费精品一区 | av解说在线 | 就要操av | 日本a一级 | jlzzjlzz欧美大全 | 成人一区二区三区在线观看 | 天天插天天摸 | 国产福利视频在线观看 | 国产一区二区三区四区精 | 最近中文字幕在线中文视频 | 91色九色 | 国产精品三级在线观看无码 | 久久久成人免费 | 国产农村妇女精品一区二区 | 亚洲国产一区在线 |