EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题
生活随笔
收集整理的這篇文章主要介紹了
EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
EL之Bagging:利用Bagging算法實現回歸預測(實數值評分預測)問題
?
?
目錄
輸出結果
設計思路
核心思路
?
?
輸出結果
?
設計思路
?
核心思路
#4.1、當treeDepth=1,對圖進行可視化 #(1)、定義numTreesMax、treeDepth numTreesMax = 30 treeDepth = 1 # ----------------------▲▲▲▲▲modelList = [] predList = []#number of samples to draw for stochastic bagging nBagSamples = int(len(xTrain) * 0.5)for iTrees in range(numTreesMax):idxBag = []for i in range(nBagSamples):idxBag.append(random.choice(range(len(xTrain))))xTrainBag = [xTrain[i] for i in idxBag]yTrainBag = [yTrain[i] for i in idxBag]modelList.append(DecisionTreeRegressor(max_depth=treeDepth))modelList[-1].fit(xTrainBag, yTrainBag)latestPrediction = modelList[-1].predict(xTest)predList.append(list(latestPrediction))mse = [] allPredictions = [] for iModels in range(len(modelList)):prediction = []for iPred in range(len(xTest)):prediction.append(sum([predList[i][iPred] for i in range(iModels + 1)])/(iModels + 1))allPredictions.append(prediction)errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))]mse.append(sum([e * e for e in errors]) / len(yTest))#4.2、當treeDepth=1,對圖進行可視化 #(1)、定義numTreesMax、treeDepth numTreesMax = 30 treeDepth = 5 # ----------------------▲▲▲▲▲#4.3、當treeDepth=12,對圖進行可視化 #(1)、定義numTreesMax、treeDepthnumTreesMax = 100 # ----------------------☆☆☆☆☆ treeDepth = 12 # ----------------------☆☆☆☆☆?
?
?
《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀總結
以上是生活随笔為你收集整理的EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: EL之Bagging(DTR):利用DI
- 下一篇: EL之Boosting之GB(DTR):