日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

NLP之TFTS读入数据:TF之TFTS读入时间序列数据的几种方法

發布時間:2025/3/21 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 NLP之TFTS读入数据:TF之TFTS读入时间序列数据的几种方法 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

NLP之TFTS讀入數據:TF之TFTS讀入時間序列數據的幾種方法

?

目錄

T1、從Numpy 數組中讀入時間序列數據

T2、從csv文件中讀入時間序列數據


?

?

?

T1、從Numpy 數組中讀入時間序列數據

1、設計思路

2、輸出結果

{'times': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194,195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285,286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298,299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311,312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337,338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350,351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363,364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376,377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389,390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402,403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415,416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428,429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441,442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454,455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467,468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480,481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493,494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506,507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519,520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532,533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545,546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558,559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571,572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584,585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610,611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623,624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636,637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649,650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662,663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675,676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688,689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701,702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714,715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727,728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740,741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753,754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766,767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779,780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792,793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805,806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818,819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831,832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844,845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857,858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870,871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883,884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896,897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909,910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922,923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935,936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948,949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961,962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974,975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987,988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]), 'values': array([[ -1.61520834e-01],[ -1.20098371e-01],[ 4.83943258e-02],……[ 4.99396130e+00],[ 4.91760246e+00]])}one_batch_data: {'times': array([[11, 12, 13, 14, 15, 16, 17, 18, 19, 20],[52, 53, 54, 55, 56, 57, 58, 59, 60, 61]]), 'values': array([[[ 0.2116637 ],[ 0.35786912],[ 0.46659477],[ 0.47641276],[ 0.69212934],[ 0.38971264],[ 0.75060135],[ 0.67389518],[ 0.79628369],[ 0.66315587]],[[ 1.37931288],[ 1.20433465],[ 1.25861198],[ 1.22299998],[ 1.07184071],[ 1.29255228],[ 1.125529 ],[ 1.13725779],[ 1.37877491],[ 1.05761771]]])}

?

?

T2、從csv文件中讀入時間序列數據

1、設計思路

?

2、輸出結果

csv文件內容
{'times': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351,352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377,378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403,404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429,430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442,443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481,482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,495, 496, 497, 498, 499, 500], dtype=int64), 'values': array([[ -0.66566038],[ -0.11643804],[ 0.73986262],[ 0.73686332],[ 0.22894809],[ 2.25707316],[ 3.02345729],[ 2.48116112],[ 3.77363873],……[ 9.78094292],[ 9.75562382],[ 9.1494894 ],[ 8.94796562],[ 9.1767683 ],[ 8.76840878],[ 10.39624882],[ 10.39477444],[ 11.63126087],[ 11.82220745],[ 13.60107708],……[ 48.50384903],[ 50.1702652 ]], dtype=float32)}batch1: {'times': array([[ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15, 16, 17],[ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,112, 113, 114],[ 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,96, 97, 98],[ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,31, 32, 33]], dtype=int64), 'values': array([[[ -0.11643804],[ 0.73986262],[ 0.73686332],[ 0.22894809],[ 2.25707316],[ 3.02345729],[ 2.48116112],[ 3.77363873],[ 5.05925751],[ 3.55318618],[ 4.55448627],[ 3.65547562],[ 3.41964769],[ 4.3033762 ],[ 4.83015394],[ 7.25305748]],[[ 9.1494894 ],[ 8.94796562],[ 9.1767683 ],[ 8.76840878],[ 10.39624882],[ 10.39477444],[ 11.63126087],[ 11.82220745],[ 13.60107708],[ 14.54919147],[ 12.63475323],[ 13.77411556],[ 14.4580822 ],[ 13.27674103],[ 16.00004959],[ 13.04977226]],[[ 5.21278238],[ 6.05672884],[ 5.40424728],[ 4.73352098],[ 5.241045 ],[ 6.84472036],[ 8.24261761],[ 6.6868186 ],[ 6.42903566],[ 7.45926046],[ 8.22571754],[ 7.66172266],[ 8.3487215 ],[ 8.02922821],[ 9.78094292],[ 9.75562382]],[[ 5.06480217],[ 5.44808197],[ 6.25130129],[ 6.21433544],[ 3.07021165],[ 6.99548769],[ 7.18094254],[ 6.08487606],[ 6.95580626],[ 6.69231272],[ 6.33995914],[ 7.65901327],[ 6.15707159],[ 4.02366161],[ 7.38055515],[ 6.97215605]]], dtype=float32)} batch2: {'times': array([[196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,209, 210, 211],[164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,177, 178, 179],[180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192,193, 194, 195],[ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,80, 81, 82]], dtype=int64), 'values': array([[[ 18.70889664],[ 20.97040749],[ 18.98358727],[ 20.76308441],[ 19.8111763 ],[ 20.24139977],[ 20.78884697],[ 19.92458725],[ 21.60401917],[ 23.30040932],[ 22.26217079],[ 21.24304962],[ 22.0769062 ],[ 21.78022194],[ 22.94853401],[ 23.72076225]],[[ 14.08812237],[ 13.05949211],[ 12.18454933],[ 13.0100584 ],[ 12.45032787],[ 12.20445251],[ 14.39420128],[ 13.49261189],[ 14.91460896],[ 15.97672939],[ 13.96235466],[ 13.77840614],[ 14.39425278],[ 14.3149929 ],[ 14.37080956],[ 15.34130669]],[[ 13.42441463],[ 14.54726124],[ 12.51644135],[ 15.36040783],[ 14.52577019],[ 15.90562916],[ 15.12482071],[ 15.55534458],[ 12.2242775 ],[ 15.11554909],[ 14.23464584],[ 16.52157021],[ 18.14558029],[ 16.51932144],[ 16.8815918 ],[ 18.08337784]],[[ 2.63787413],[ 2.85149288],[ 1.90719497],[ 2.56881618],[ 3.8692596 ],[ 3.98991776],[ 3.64151525],[ 2.81291175],[ 4.96482801],[ 3.05093789],[ 4.2030468 ],[ 4.26916265],[ 2.81864333],[ 3.33492851],[ 5.23974133],[ 4.97288084]]], dtype=float32)}

?

?

?

?

?

?

?

總結

以上是生活随笔為你收集整理的NLP之TFTS读入数据:TF之TFTS读入时间序列数据的几种方法的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。