日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > 数据库 >内容正文

数据库

mysql的付费功能_MYSQL对游戏用户付费行为分析

發布時間:2025/3/20 数据库 21 豆豆
生活随笔 收集整理的這篇文章主要介紹了 mysql的付费功能_MYSQL对游戏用户付费行为分析 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

數據來源:某SLG類型手機游戲用戶注冊7日內的游戲數據

數據大小:828934條數據

字段解釋:

理解字段:該表格的主鍵為user_id

該游戲充值主要獲得以下幾種物品:資源類(木頭、石頭、象牙、肉、魔法等),士兵類(勇士、馴獸師、薩滿等),加速卷類(通用加速、建筑加速、科研加速、訓練加速、治療加速等)

在線時長被命名為avg_online_minutes,且一部分用戶該字段的值為小于一的小數,可以理解為該在線時長為此用戶七天平均的在線分鐘數

各種物品的獲得數量,根據對數據的觀察,該字段存在很多值為0的記錄。然后對游戲試玩發現這些物品可以免費獲得很多,因此猜測這些獲得次數理解為付費后購買獲得的數量

主要游戲方式:

分析目的:

根據已有數據對該游戲7日內的游戲玩家付費行為進行分析。

一、玩家注冊信息

總注冊人數:

SELECT COUNT(DISTINCT user_id)

FROM tap_fun_test

共有82W+條的游戲用戶數據,7天內共有828934個用戶注冊。

每日注冊人數分布:

SELECT DATE(register_time),COUNT(DISTINCT user_id)

FROM tap_fun_test

GROUP BY DATE(register_time)

在3月10日迎來了一次注冊的高峰,3月13日又迎來一次注冊的小高峰。但兩次高峰過后每天的注冊人數相較于高峰前并沒有明顯增長,可見這兩次活動只是帶來了短期的注冊高峰,對于游戲的整體熱度并沒有很大提升。

每日付費人數分布:

SELECT DATE(register_time),COUNT(DISTINCT user_id)

FROM tap_fun_test

WHERE pay_count != 0

GROUP BY DATE(register_time)

付費玩家占比:

SELECT test1.paying_user ,test1.paying_user/test2.total_user AS rate_for_paying

FROM

(SELECT COUNT(user_id) AS paying_user

FROM tap_fun_test

WHERE pay_count!=0) AS test1,

(SELECT COUNT(user_id) AS total_user

FROM tap_fun_test) AS test2

七天之內付費的玩家有19549人,付費人數占注冊總人數的2.36%。

二、用戶在線時長信息

SELECT AVG(avg_online_minutes)

FROM tap_fun_test

首先我們知道了共有828934條數據,求得下四分位數、中位數、上四分位數的位置分別為207233.75,414467.5,621701.25

SELECT avg_online_minutes

FROM tap_fun_test

ORDER BY avg_online_minutes

LIMIT 207232,2

下四分位數為0

SELECT avg_online_minutes

FROM tap_fun_test

ORDER BY avg_online_minutes

LIMIT 414466,2

中位數為2

SELECT avg_online_minutes

FROM tap_fun_test

ORDER BY avg_online_minutes

LIMIT 621700,2

上四分位數為5

可見有75%的玩家7日內的平均在線時間在5分鐘左右,猜測是只有第一天登陸了約5*7=35分鐘左右,玩家流失的可能性很大。但是由于沒有更詳細的登陸數據,無法對玩家的流失程度進行分析。

付費用戶在線信息:

SELECT AVG(avg_online_minutes)

FROM tap_fun_test

WHERE pay_count!=0

SELECT COUNT(user_id)

FROM tap_fun_test

WHERE pay_count!=0

SELECT avg_online_minutes

FROM tap_fun_test

WHERE pay_count!=0

ORDER BY avg_online_minutes

LIMIT 4886,2

SELECT avg_online_minutes

FROM tap_fun_test

WHERE pay_count!=0

ORDER BY avg_online_minutes

LIMIT 9774,1

SELECT avg_online_minutes

FROM tap_fun_test

WHERE pay_count!=0

ORDER BY avg_online_minutes

LIMIT 14661,2

下四分位數為31,中位數為84,上四分位數為191.平均數為135.7898

將平均在線時長大于30分鐘的玩家定為活躍玩家。

將平均在線時長大于30分鐘,且要塞登記不低于10級的玩家定位高端玩家;將平均在線時長大于30分鐘,而要塞等級低于10級的玩家定位一般玩家。

三、計算付費指標

付費率:

SELECT test1.paying_user,test2.active_user,test1.paying_user/test2.active_user AS pay_user_rate

FROM

(SELECT COUNT(user_id) AS paying_user

FROM tap_fun_test

WHERE pay_count!=0) AS test1,

(SELECT COUNT(user_id) AS active_user

FROM tap_fun_test

WHERE avg_online_minutes>=30) AS test2

付費率為30.87%,即付費人數占活躍人數的30.87%

每日付費率波動:

SELECT test1.time1,test1.paying_user,test2.active_user,test1.paying_user/test2.active_user AS pay_user_rate

FROM

(SELECT COUNT(user_id) AS paying_user,DATE(register_time) AS time1

FROM tap_fun_test

WHERE pay_count!=0

GROUP BY DATE(register_time)) AS test1,

(SELECT COUNT(user_id) AS active_user,DATE(register_time) AS time2

FROM tap_fun_test

WHERE avg_online_minutes>=30

GROUP BY DATE(register_time)) AS test2

WHERE test1.time1=test2.time2

ARPPU:

SELECT test1.paying_user,test2.paying_price,test2.paying_price/test1.paying_user AS ARPPU

FROM

(SELECT COUNT(user_id) AS paying_user

FROM tap_fun_test

WHERE pay_count!=0) AS test1,

(SELECT SUM(pay_price) AS paying_price

FROM tap_fun_test

) AS test2

平均每付費用戶收入28.5元。

ARPU:

SELECT test1.active_user,test2.paying_price,test2.paying_price/test1.active_user AS ARPU

FROM

(SELECT COUNT(user_id) AS active_user

FROM tap_fun_test

WHERE avg_online_minutes>=30) AS test1,

(SELECT SUM(pay_price) AS paying_price

FROM tap_fun_test

) AS test2

平均每用戶收入8.8元。

目前較好的手游ARPU超過5元;一般的手游ARPU在3~5元之間;ARPU低于3元則說明表現較差。

可見該手游的盈利能力較好。

四、付費習慣分析

資源類使用率:

SELECT SUM(wood_reduce_value+stone_reduce_value+ivory_reduce_value+meat_reduce_value+magic_reduce_value) AS resource_reduce_value,

SUM(wood_add_value+stone_add_value+ivory_add_value+meat_add_value+magic_add_value) AS resource_add_value,

SUM(wood_reduce_value+stone_reduce_value+ivory_reduce_value+meat_reduce_value+magic_reduce_value)/

SUM(wood_add_value+stone_add_value+ivory_add_value+meat_add_value+magic_add_value) AS resource_usage

FROM tap_fun_test

高端玩家資源利用率:

SELECT SUM(wood_reduce_value+stone_reduce_value+ivory_reduce_value+meat_reduce_value+magic_reduce_value) AS resource_reduce_value,

SUM(wood_add_value+stone_add_value+ivory_add_value+meat_add_value+magic_add_value) AS resource_add_value,

SUM(wood_reduce_value+stone_reduce_value+ivory_reduce_value+meat_reduce_value+magic_reduce_value)/

SUM(wood_add_value+stone_add_value+ivory_add_value+meat_add_value+magic_add_value) AS resource_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level >= 10

一般玩家資源利用率:

SELECT SUM(wood_reduce_value+stone_reduce_value+ivory_reduce_value+meat_reduce_value+magic_reduce_value) AS resource_reduce_value,

SUM(wood_add_value+stone_add_value+ivory_add_value+meat_add_value+magic_add_value) AS resource_add_value,

SUM(wood_reduce_value+stone_reduce_value+ivory_reduce_value+meat_reduce_value+magic_reduce_value)/

SUM(wood_add_value+stone_add_value+ivory_add_value+meat_add_value+magic_add_value) AS resource_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level < 10

高端玩家各類資源使用率:

SELECT SUM(wood_reduce_value + stone_reduce_value + ivory_reduce_value + meat_reduce_value + magic_reduce_value)/

SUM(wood_add_value+stone_add_value+ivory_add_value+meat_add_value+magic_add_value) AS resource_usage,

SUM(wood_reduce_value)/SUM(wood_add_value) AS wood_usage,

SUM(stone_reduce_value)/SUM(stone_add_value) AS stone_usage,

SUM(ivory_reduce_value)/SUM(ivory_add_value) AS ivory_usage,

SUM(meat_reduce_value)/SUM(meat_add_value) AS meat_usage,

SUM(magic_reduce_value)/SUM(magic_add_value) AS magic_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level >= 10

一般玩家各類資源使用率:

SELECT SUM(wood_reduce_value + stone_reduce_value + ivory_reduce_value + meat_reduce_value + magic_reduce_value)/

SUM(wood_add_value+stone_add_value+ivory_add_value+meat_add_value+magic_add_value) AS resource_usage,

SUM(wood_reduce_value)/SUM(wood_add_value) AS wood_usage,

SUM(stone_reduce_value)/SUM(stone_add_value) AS stone_usage,

SUM(ivory_reduce_value)/SUM(ivory_add_value) AS ivory_usage,

SUM(meat_reduce_value)/SUM(meat_add_value) AS meat_usage,

SUM(magic_reduce_value)/SUM(magic_add_value) AS magic_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level < 10

可以看出高端玩家和低端玩家在象牙使用率上有很大的差距,整體來看木頭使用率最高,象牙的使用率最低。木頭資源對于玩家來說比較重要,而象牙資源可能相對來說沒那么重要。

士兵類損耗率:

SELECT SUM(infantry_reduce_value+cavalry_reduce_value+shaman_reduce_value) AS soldier_reduce_value,

SUM(infantry_add_value+cavalry_add_value+shaman_add_value) AS soldier_add_value,

SUM(infantry_reduce_value+cavalry_reduce_value+shaman_reduce_value)/

SUM(infantry_add_value+cavalry_add_value+shaman_add_value) AS soldier_usage

FROM tap_fun_test

高端玩家士兵損耗率:

SELECT SUM(infantry_reduce_value+cavalry_reduce_value+shaman_reduce_value) AS soldier_reduce_value,

SUM(infantry_add_value+cavalry_add_value+shaman_add_value) AS soldier_add_value,

SUM(infantry_reduce_value+cavalry_reduce_value+shaman_reduce_value)/

SUM(infantry_add_value+cavalry_add_value+shaman_add_value) AS soldier_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level >= 10

一般玩家士兵損耗率:

SELECT SUM(infantry_reduce_value+cavalry_reduce_value+shaman_reduce_value) AS soldier_reduce_value,

SUM(infantry_add_value+cavalry_add_value+shaman_add_value) AS soldier_add_value,

SUM(infantry_reduce_value+cavalry_reduce_value+shaman_reduce_value)/

SUM(infantry_add_value+cavalry_add_value+shaman_add_value) AS soldier_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level < 10

高端玩家各類士兵損耗率:

SELECT SUM(infantry_reduce_value + cavalry_reduce_value + shaman_reduce_value)/

SUM(infantry_add_value+cavalry_add_value+shaman_add_value) AS soldier_usage,

SUM(infantry_reduce_value)/SUM(infantry_add_value) AS infantry_usage,

SUM(cavalry_reduce_value)/SUM(cavalry_add_value) AS cavalry_usage,

SUM(shaman_reduce_value)/SUM(shaman_add_value) AS shaman_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level >= 10

一般玩家各類士兵損耗率:

SELECT SUM(infantry_reduce_value + cavalry_reduce_value + shaman_reduce_value)/

SUM(infantry_add_value+cavalry_add_value+shaman_add_value) AS soldier_usage,

SUM(infantry_reduce_value)/SUM(infantry_add_value) AS infantry_usage,

SUM(cavalry_reduce_value)/SUM(cavalry_add_value) AS cavalry_usage,

SUM(shaman_reduce_value)/SUM(shaman_add_value) AS shaman_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level < 10

同時求出標準差,可見高端玩家相對于一般玩家使用的兵種更加平衡,從整體來看,高端玩家的士兵損失率明顯低于一般玩家。

高端玩家加速券使用率:

SELECT SUM(general_acceleration_reduce_value+building_acceleration_reduce_value+reaserch_acceleration_reduce_value+training_acceleration_reduce_value+treatment_acceleration_reduce_value) AS acceleration_reduce_value,

SUM(general_acceleration_add_value+building_acceleration_add_value+reaserch_acceleration_add_value+training_acceleration_add_value+treatment_acceleraion_add_value) AS acceleraion_add_value,

SUM(general_acceleration_reduce_value+building_acceleration_reduce_value+reaserch_acceleration_reduce_value+training_acceleration_reduce_value+treatment_acceleration_reduce_value)/

SUM(general_acceleration_add_value+building_acceleration_add_value+reaserch_acceleration_add_value+training_acceleration_add_value+treatment_acceleraion_add_value) AS acceleraion_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level >= 10

一般玩家加速券使用率:

SELECT SUM(general_acceleration_reduce_value+building_acceleration_reduce_value+reaserch_acceleration_reduce_value+training_acceleration_reduce_value+treatment_acceleration_reduce_value) AS acceleration_reduce_value,

SUM(general_acceleration_add_value+building_acceleration_add_value+reaserch_acceleration_add_value+training_acceleration_add_value+treatment_acceleraion_add_value) AS acceleraion_add_value,

SUM(general_acceleration_reduce_value+building_acceleration_reduce_value+reaserch_acceleration_reduce_value+training_acceleration_reduce_value+treatment_acceleration_reduce_value)/

SUM(general_acceleration_add_value+building_acceleration_add_value+reaserch_acceleration_add_value+training_acceleration_add_value+treatment_acceleraion_add_value) AS acceleraion_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level < 10

高端玩家各類加速券使用率:

SELECT SUM(general_acceleration_reduce_value+building_acceleration_reduce_value+reaserch_acceleration_reduce_value+training_acceleration_reduce_value+treatment_acceleration_reduce_value)/

SUM(general_acceleration_add_value+building_acceleration_add_value+reaserch_acceleration_add_value+training_acceleration_add_value+treatment_acceleraion_add_value) AS acceleraion_usage,

SUM(general_acceleration_reduce_value)/SUM(general_acceleration_add_value) AS general_acceleration_usage,

SUM(building_acceleration_reduce_value)/SUM(building_acceleration_add_value) AS building_acceleration_usage,

SUM(reaserch_acceleration_reduce_value)/SUM(reaserch_acceleration_add_value) AS reaserch_acceleration_usage,

SUM(training_acceleration_reduce_value)/SUM(training_acceleration_add_value) AS training_acceleration_usage,

SUM(treatment_acceleration_reduce_value)/SUM(treatment_acceleraion_add_value) AS treatment_acceleraion_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level >= 10

一般玩家各類加速券使用率:

SELECT SUM(general_acceleration_reduce_value+building_acceleration_reduce_value+reaserch_acceleration_reduce_value+training_acceleration_reduce_value+treatment_acceleration_reduce_value)/

SUM(general_acceleration_add_value+building_acceleration_add_value+reaserch_acceleration_add_value+training_acceleration_add_value+treatment_acceleraion_add_value) AS acceleraion_usage,

SUM(general_acceleration_reduce_value)/SUM(general_acceleration_add_value) AS general_acceleration_usage,

SUM(building_acceleration_reduce_value)/SUM(building_acceleration_add_value) AS building_acceleration_usage,

SUM(reaserch_acceleration_reduce_value)/SUM(reaserch_acceleration_add_value) AS reaserch_acceleration_usage,

SUM(training_acceleration_reduce_value)/SUM(training_acceleration_add_value) AS training_acceleration_usage,

SUM(treatment_acceleration_reduce_value)/SUM(treatment_acceleraion_add_value) AS treatment_acceleraion_usage

FROM tap_fun_test

WHERE avg_online_minutes>30 AND bd_stronghold_level < 10

高端玩家的加速券的使用率明顯高于一般玩家,玩家對建筑加速券的需求量較高,對治療加速券的需求較低。

總結

以上是生活随笔為你收集整理的mysql的付费功能_MYSQL对游戏用户付费行为分析的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。