日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

c语言cnn实现ocr字符,端到端的OCR:基于CNN的实现

發布時間:2025/3/20 编程问答 38 豆豆
生活随笔 收集整理的這篇文章主要介紹了 c语言cnn实现ocr字符,端到端的OCR:基于CNN的实现 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

OCR是一個古老的問題。這里我們考慮一類特殊的OCR問題,就是驗證碼的識別。傳統做驗證碼的識別,需要經過如下步驟:

1. 二值化

2. 字符分割

3. 字符識別

這里最難的就是分割。如果字符之間有粘連,那分割起來就無比痛苦了。

最近研究深度學習,發現有人做端到端的OCR。于是準備嘗試一下。一般來說目前做基于深度學習的OCR大概有如下套路:

1. 把OCR的問題當做一個多標簽學習的問題。4個數字組成的驗證碼就相當于有4個標簽的圖片識別問題(這里的標簽還是有序的),用CNN來解決。

2. 把OCR的問題當做一個語音識別的問題,語音識別是把連續的音頻轉化為文本,驗證碼識別就是把連續的圖片轉化為文本,用CNN+LSTM+CTC來解決。

目前第1種方法可以做到90%多的準確率(4個都猜對了才算對),第二種方法我目前的實驗還只能到20%多,還在研究中。所以這篇文章先介紹第一種方法。

我們以python-captcha驗證碼的識別為例來做驗證碼識別。

下圖是一些這個驗證碼的例子:

python-captcha

可以看到這里面有粘連,也有形變,噪音。所以我們可以看看用CNN識別這個驗證碼的效果。

首先,我們定義一個迭代器來輸入數據,這里我們每次都直接調用python-captcha這個庫來根據隨機生成的label來生成相應的驗證碼圖片。這樣我們的訓練集相當于是無窮大的。

class OCRIter(mx.io.DataIter):

def __init__(self, count, batch_size, num_label, height, width):

super(OCRIter, self).__init__()

self.captcha = ImageCaptcha(fonts=['./data/OpenSans-Regular.ttf'])

self.batch_size = batch_size

self.count = count

self.height = height

self.width = width

self.provide_data = [('data', (batch_size, 3, height, width))]

self.provide_label = [('softmax_label', (self.batch_size, num_label))]

def __iter__(self):

for k in range(self.count / self.batch_size):

data = []

label = []

for i in range(self.batch_size):

# 生成一個四位數字的隨機字符串

num = gen_rand()

# 生成隨機字符串對應的驗證碼圖片

img = self.captcha.generate(num)

img = np.fromstring(img.getvalue(), dtype='uint8')

img = cv2.imdecode(img, cv2.IMREAD_COLOR)

img = cv2.resize(img, (self.width, self.height))

cv2.imwrite("./tmp" + str(i % 10) + ".png", img)

img = np.multiply(img, 1/255.0)

img = img.transpose(2, 0, 1)

data.append(img)

label.append(get_label(num))

data_all = [mx.nd.array(data)]

label_all = [mx.nd.array(label)]

data_names = ['data']

label_names = ['softmax_label']

data_batch = OCRBatch(data_names, data_all, label_names, label_all)

yield data_batch

def reset(self):

pass

然后我們用如下的網絡來訓練這個數據集:

def get_ocrnet():

data = mx.symbol.Variable('data')

label = mx.symbol.Variable('softmax_label')

conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=32)

pool1 = mx.symbol.Pooling(data=conv1, pool_type="max", kernel=(2,2), stride=(1, 1))

relu1 = mx.symbol.Activation(data=pool1, act_type="relu")

conv2 = mx.symbol.Convolution(data=relu1, kernel=(5,5), num_filter=32)

pool2 = mx.symbol.Pooling(data=conv2, pool_type="avg", kernel=(2,2), stride=(1, 1))

relu2 = mx.symbol.Activation(data=pool2, act_type="relu")

conv3 = mx.symbol.Convolution(data=relu2, kernel=(3,3), num_filter=32)

pool3 = mx.symbol.Pooling(data=conv3, pool_type="avg", kernel=(2,2), stride=(1, 1))

relu3 = mx.symbol.Activation(data=pool3, act_type="relu")

flatten = mx.symbol.Flatten(data = relu3)

fc1 = mx.symbol.FullyConnected(data = flatten, num_hidden = 512)

fc21 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)

fc22 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)

fc23 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)

fc24 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)

fc2 = mx.symbol.Concat(*[fc21, fc22, fc23, fc24], dim = 0)

label = mx.symbol.transpose(data = label)

label = mx.symbol.Reshape(data = label, target_shape = (0, ))

return mx.symbol.SoftmaxOutput(data = fc2, label = label, name = "softmax")

上面這個網絡要稍微解釋一下。因為這個問題是一個有順序的多label的圖片分類問題。我們在fc1的層上面接了4個Full Connect層(fc21,fc22,fc23,fc24),用來對應不同位置的4個數字label。然后將它們Concat在一起。然后同時學習這4個label。目前用上面的網絡訓練,4位數字全部預測正確的精度可以達到90%左右。

更新,經過比較長時間的訓練,精度可以達到98%左右,最后幾輪迭代的結果如下:

2016-05-22 21:58:34,859 Epoch[14] Batch [1250] Speed: 117.29 samples/sec Train-Accuracy=0.980800

2016-05-22 21:58:48,527 Epoch[14] Batch [1300] Speed: 117.06 samples/sec Train-Accuracy=0.982000

2016-05-22 21:59:02,174 Epoch[14] Batch [1350] Speed: 117.24 samples/sec Train-Accuracy=0.981200

2016-05-22 21:59:16,509 Epoch[14] Batch [1400] Speed: 111.62 samples/sec Train-Accuracy=0.976800

2016-05-22 21:59:31,031 Epoch[14] Batch [1450] Speed: 110.18 samples/sec Train-Accuracy=0.975600

2016-05-22 21:59:45,323 Epoch[14] Batch [1500] Speed: 111.95 samples/sec Train-Accuracy=0.975600

2016-05-22 21:59:59,634 Epoch[14] Batch [1550] Speed: 111.81 samples/sec Train-Accuracy=0.985600

2016-05-22 22:00:13,997 Epoch[14] Batch [1600] Speed: 111.39 samples/sec Train-Accuracy=0.978800

2016-05-22 22:00:28,270 Epoch[14] Batch [1650] Speed: 112.11 samples/sec Train-Accuracy=0.983200

2016-05-22 22:00:42,713 Epoch[14] Batch [1700] Speed: 110.78 samples/sec Train-Accuracy=0.985200

2016-05-22 22:00:56,668 Epoch[14] Batch [1750] Speed: 114.65 samples/sec Train-Accuracy=0.975600

2016-05-22 22:01:11,000 Epoch[14] Batch [1800] Speed: 111.64 samples/sec Train-Accuracy=0.981200

2016-05-22 22:01:25,450 Epoch[14] Batch [1850] Speed: 110.73 samples/sec Train-Accuracy=0.979600

2016-05-22 22:01:39,860 Epoch[14] Batch [1900] Speed: 111.03 samples/sec Train-Accuracy=0.978400

2016-05-22 22:01:54,272 Epoch[14] Batch [1950] Speed: 111.02 samples/sec Train-Accuracy=0.978800

2016-05-22 22:02:08,939 Epoch[14] Batch [2000] Speed: 109.09 samples/sec Train-Accuracy=0.981600

2016-05-22 22:02:08,939 Epoch[14] Resetting Data Iterator

2016-05-22 22:02:08,939 Epoch[14] Time cost=568.681

2016-05-22 22:02:14,124 Epoch[14] Validation-Accuracy=0.986000

另外這個Slide提供了關于深度學習進行驗證碼識別的詳細描述。

總結

以上是生活随笔為你收集整理的c语言cnn实现ocr字符,端到端的OCR:基于CNN的实现的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 亚洲成人伊人 | 久久亚洲精品小早川怜子 | 黄色三级在线观看 | 国产精品久久久无码一区 | 久操免费在线 | 欧美一区二区影院 | 日本人做爰全过程 | 夜夜爽av福利精品导航 | 日韩欧美一区视频 | 重囗味sm一区二区三区 | 激情视频网 | 我和单位漂亮少妇激情 | 国产日韩视频在线观看 | 亚洲精品久久久久久久蜜桃臀 | 啪啪免费小视频 | 91视频黄版 | 毛片的网站 | 在线播放视频高清在线观看 | 波多野结衣一区二区三区在线观看 | 亚洲国产成人一区二区 | 精品亚洲一区二区三区四区五区高 | 草av在线 | 蜜臀一区二区三区 | 亚洲另类春色 | 91亚洲精品久久久蜜桃借种 | 美女插插视频 | 中文字幕一区二区三区视频 | 亚洲一区二区国产精品 | 动漫美女被x | 91人人爱| 天天干天天操天天舔 | 懂色av一区二区三区免费观看 | 欧美精品一区在线发布 | 亚洲综合情 | 在线日韩一区 | 亚洲AV无码国产精品国产剧情 | 俺去久久 | а天堂中文在线官网 | 日韩欧美卡一卡二 | 国模叶桐尿喷337p人体 | 农村妇女精品一区二区 | 最新黄色av网址 | 亚洲欧美视频一区二区 | 婷婷去俺也去 | 日日爱网站 | 五月婷婷激情 | 人妻少妇精品无码专区 | 午夜嘿嘿 | 毛片资源 | 国产白丝喷水 | 中文字幕伦理 | 91禁动漫在线 | 日韩毛片高清在线播放 | 亚洲激情图片 | 有码在线| 少妇精品视频 | 一级欧美在线 | 在线黄网 | 成人一卡二卡 | av伊人久久| 狠狠干快播 | 亚洲区第一页 | 人人妻人人澡人人爽欧美一区 | 国产精品扒开腿做爽爽 | 一区二区视 | 欧美午夜一区二区三区 | 欧美视频在线不卡 | 经典三级av在线 | 国产高清一区二区三区四区 | 四虎影院黄色 | 欧美色图日韩 | julia在线播放88mav | 人人妻人人澡人人爽人人dvd | 91麻豆精品一二三区在线 | 中文字幕在线观看亚洲 | 高h1v| 亚洲最新av网站 | 久久一道本 | 黄视频在线 | 妞妞影视 | 尤物视频最新网址 | 久草热线| 中文无码av一区二区三区 | av中文天堂 | 欧美日韩电影一区二区三区 | 国产精品视频看看 | 久久久久人妻一区二区三区 | 日本免费网站 | 国产免费麻豆 | 91国内精品久久久 | 亚洲一级黄色片 | 污视频网站免费 | 91美女片黄在线观看91美女 | 亚洲人人人 | 久久婷婷av | 亚洲国产日韩一区二区 | 在线观看国产精品一区 | 激情网站视频 | 免费国产网站 |