日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

python相关参考文献_python机器学习理论与实战(六)支持向量机

發布時間:2025/3/20 python 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python相关参考文献_python机器学习理论与实战(六)支持向量机 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

上節基本完成了SVM的理論推倒,尋找最大化間隔的目標最終轉換成求解拉格朗日乘子變量alpha的求解問題,求出了alpha即可求解出SVM的權重W,有了權重也就有了最大間隔距離,但是其實上節我們有個假設:就是訓練集是線性可分的,這樣求出的alpha在[0,infinite]。但是如果數據不是線性可分的呢?此時我們就要允許部分的樣本可以越過分類器,這樣優化的目標函數就可以不變,只要引入松弛變量

即可,它表示錯分類樣本點的代價,分類正確時它等于0,當分類錯誤時

,其中Tn表示樣本的真實標簽-1或者1,回顧上節中,我們把支持向量到分類器的距離固定為1,因此兩類的支持向量間的距離肯定大于1的,當分類錯誤時

肯定也大于1,如(圖五)所示(這里公式和圖標序號都接上一節)。

(圖五)

這樣有了錯分類的代價,我們把上節(公式四)的目標函數上添加上這一項錯分類代價,得到如(公式八)的形式:

(公式八)

重復上節的拉格朗日乘子法步驟,得到(公式九):

(公式九)

多了一個Un乘子,當然我們的工作就是繼續求解此目標函數,繼續重復上節的步驟,求導得到(公式十):

(公式十)

又因為alpha大于0,而且Un大于0,所以0

推導到現在,優化函數的形式基本沒變,只是多了一項錯分類的價值,但是多了一個條件,0

(圖六)

在(圖六)中,現有的樣本是很明顯線性不可分,但是加入我們利用現有的樣本X之間作些不同的運算,如(圖六)右邊所示的樣子,而讓f作為新的樣本(或者說新的特征)是不是更好些?現在把X已經投射到高維度上去了,但是f我們不知道,此時核函數就該上場了,以高斯核函數為例,在(圖七)中選幾個樣本點作為基準點,來利用核函數計算f,如(圖七)所示:

(圖七)

這樣就有了f,而核函數此時相當于對樣本的X和基準點一個度量,做權重衰減,形成依賴于x的新的特征f,把f放在上面說的SVM中繼續求解alpha,然后得出權重就行了,原理很簡單吧,為了顯得有點學術味道,把核函數也做個樣子加入目標函數中去吧,如(公式十一)所示:

(公式十一)

其中K(Xn,Xm)是核函數,和上面目標函數比沒有多大的變化,用SMO優化求解就行了,代碼如下:

def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMO

oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)

iter = 0

entireSet = True; alphaPairsChanged = 0

while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):

alphaPairsChanged = 0

if entireSet: #go over all

for i in range(oS.m):

alphaPairsChanged += innerL(i,oS)

print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)

iter += 1

else:#go over non-bound (railed) alphas

nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]

for i in nonBoundIs:

alphaPairsChanged += innerL(i,oS)

print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)

iter += 1

if entireSet: entireSet = False #toggle entire set loop

elif (alphaPairsChanged == 0): entireSet = True

print "iteration number: %d" % iter

return oS.b,oS.alphas

下面演示一個小例子,手寫識別。

(1)收集數據:提供文本文件

(2)準備數據:基于二值圖像構造向量

(3)分析數據:對圖像向量進行目測

(4)訓練算法:采用兩種不同的核函數,并對徑向基函數采用不同的設置來運行SMO算法。

(5)測試算法:編寫一個函數來測試不同的核函數,并計算錯誤率

(6)使用算法:一個圖像識別的完整應用還需要一些圖像處理的只是,此demo略。

完整代碼如下:

from numpy import *

from time import sleep

def loadDataSet(fileName):

dataMat = []; labelMat = []

fr = open(fileName)

for line in fr.readlines():

lineArr = line.strip().split('\t')

dataMat.append([float(lineArr[0]), float(lineArr[1])])

labelMat.append(float(lineArr[2]))

return dataMat,labelMat

def selectJrand(i,m):

j=i #we want to select any J not equal to i

while (j==i):

j = int(random.uniform(0,m))

return j

def clipAlpha(aj,H,L):

if aj > H:

aj = H

if L > aj:

aj = L

return aj

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):

dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()

b = 0; m,n = shape(dataMatrix)

alphas = mat(zeros((m,1)))

iter = 0

while (iter < maxIter):

alphaPairsChanged = 0

for i in range(m):

fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b

Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions

if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):

j = selectJrand(i,m)

fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b

Ej = fXj - float(labelMat[j])

alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();

if (labelMat[i] != labelMat[j]):

L = max(0, alphas[j] - alphas[i])

H = min(C, C + alphas[j] - alphas[i])

else:

L = max(0, alphas[j] + alphas[i] - C)

H = min(C, alphas[j] + alphas[i])

if L==H: print "L==H"; continue

eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T

if eta >= 0: print "eta>=0"; continue

alphas[j] -= labelMat[j]*(Ei - Ej)/eta

alphas[j] = clipAlpha(alphas[j],H,L)

if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue

alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j

#the update is in the oppostie direction

b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T

b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T

if (0 < alphas[i]) and (C > alphas[i]): b = b1

elif (0 < alphas[j]) and (C > alphas[j]): b = b2

else: b = (b1 + b2)/2.0

alphaPairsChanged += 1

print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)

if (alphaPairsChanged == 0): iter += 1

else: iter = 0

print "iteration number: %d" % iter

return b,alphas

def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space

m,n = shape(X)

K = mat(zeros((m,1)))

if kTup[0]=='lin': K = X * A.T #linear kernel

elif kTup[0]=='rbf':

for j in range(m):

deltaRow = X[j,:] - A

K[j] = deltaRow*deltaRow.T

K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab

else: raise NameError('Houston We Have a Problem -- \

That Kernel is not recognized')

return K

class optStruct:

def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters

self.X = dataMatIn

self.labelMat = classLabels

self.C = C

self.tol = toler

self.m = shape(dataMatIn)[0]

self.alphas = mat(zeros((self.m,1)))

self.b = 0

self.eCache = mat(zeros((self.m,2))) #first column is valid flag

self.K = mat(zeros((self.m,self.m)))

for i in range(self.m):

self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

def calcEk(oS, k):

fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)

Ek = fXk - float(oS.labelMat[k])

return Ek

def selectJ(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej

maxK = -1; maxDeltaE = 0; Ej = 0

oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E

validEcacheList = nonzero(oS.eCache[:,0].A)[0]

if (len(validEcacheList)) > 1:

for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E

if k == i: continue #don't calc for i, waste of time

Ek = calcEk(oS, k)

deltaE = abs(Ei - Ek)

if (deltaE > maxDeltaE):

maxK = k; maxDeltaE = deltaE; Ej = Ek

return maxK, Ej

else: #in this case (first time around) we don't have any valid eCache values

j = selectJrand(i, oS.m)

Ej = calcEk(oS, j)

return j, Ej

def updateEk(oS, k):#after any alpha has changed update the new value in the cache

Ek = calcEk(oS, k)

oS.eCache[k] = [1,Ek]

def innerL(i, oS):

Ei = calcEk(oS, i)

if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):

j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand

alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();

if (oS.labelMat[i] != oS.labelMat[j]):

L = max(0, oS.alphas[j] - oS.alphas[i])

H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])

else:

L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)

H = min(oS.C, oS.alphas[j] + oS.alphas[i])

if L==H: print "L==H"; return 0

eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel

if eta >= 0: print "eta>=0"; return 0

oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta

oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)

updateEk(oS, j) #added this for the Ecache

if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0

oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j

updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction

b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]

b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]

if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1

elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2

else: oS.b = (b1 + b2)/2.0

return 1

else: return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO

oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)

iter = 0

entireSet = True; alphaPairsChanged = 0

while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):

alphaPairsChanged = 0

if entireSet: #go over all

for i in range(oS.m):

alphaPairsChanged += innerL(i,oS)

print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)

iter += 1

else:#go over non-bound (railed) alphas

nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]

for i in nonBoundIs:

alphaPairsChanged += innerL(i,oS)

print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)

iter += 1

if entireSet: entireSet = False #toggle entire set loop

elif (alphaPairsChanged == 0): entireSet = True

print "iteration number: %d" % iter

return oS.b,oS.alphas

def calcWs(alphas,dataArr,classLabels):

X = mat(dataArr); labelMat = mat(classLabels).transpose()

m,n = shape(X)

w = zeros((n,1))

for i in range(m):

w += multiply(alphas[i]*labelMat[i],X[i,:].T)

return w

def testRbf(k1=1.3):

dataArr,labelArr = loadDataSet('testSetRBF.txt')

b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important

datMat=mat(dataArr); labelMat = mat(labelArr).transpose()

svInd=nonzero(alphas.A>0)[0]

sVs=datMat[svInd] #get matrix of only support vectors

labelSV = labelMat[svInd];

print "there are %d Support Vectors" % shape(sVs)[0]

m,n = shape(datMat)

errorCount = 0

for i in range(m):

kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))

predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b

if sign(predict)!=sign(labelArr[i]): errorCount += 1

print "the training error rate is: %f" % (float(errorCount)/m)

dataArr,labelArr = loadDataSet('testSetRBF2.txt')

errorCount = 0

datMat=mat(dataArr); labelMat = mat(labelArr).transpose()

m,n = shape(datMat)

for i in range(m):

kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))

predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b

if sign(predict)!=sign(labelArr[i]): errorCount += 1

print "the test error rate is: %f" % (float(errorCount)/m)

def img2vector(filename):

returnVect = zeros((1,1024))

fr = open(filename)

for i in range(32):

lineStr = fr.readline()

for j in range(32):

returnVect[0,32*i+j] = int(lineStr[j])

return returnVect

def loadImages(dirName):

from os import listdir

hwLabels = []

trainingFileList = listdir(dirName) #load the training set

m = len(trainingFileList)

trainingMat = zeros((m,1024))

for i in range(m):

fileNameStr = trainingFileList[i]

fileStr = fileNameStr.split('.')[0] #take off .txt

classNumStr = int(fileStr.split('_')[0])

if classNumStr == 9: hwLabels.append(-1)

else: hwLabels.append(1)

trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))

return trainingMat, hwLabels

def testDigits(kTup=('rbf', 10)):

dataArr,labelArr = loadImages('trainingDigits')

b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)

datMat=mat(dataArr); labelMat = mat(labelArr).transpose()

svInd=nonzero(alphas.A>0)[0]

sVs=datMat[svInd]

labelSV = labelMat[svInd];

print "there are %d Support Vectors" % shape(sVs)[0]

m,n = shape(datMat)

errorCount = 0

for i in range(m):

kernelEval = kernelTrans(sVs,datMat[i,:],kTup)

predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b

if sign(predict)!=sign(labelArr[i]): errorCount += 1

print "the training error rate is: %f" % (float(errorCount)/m)

dataArr,labelArr = loadImages('testDigits')

errorCount = 0

datMat=mat(dataArr); labelMat = mat(labelArr).transpose()

m,n = shape(datMat)

for i in range(m):

kernelEval = kernelTrans(sVs,datMat[i,:],kTup)

predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b

if sign(predict)!=sign(labelArr[i]): errorCount += 1

print "the test error rate is: %f" % (float(errorCount)/m)

'''''#######********************************

Non-Kernel VErsions below

'''#######********************************

class optStructK:

def __init__(self,dataMatIn, classLabels, C, toler): # Initialize the structure with the parameters

self.X = dataMatIn

self.labelMat = classLabels

self.C = C

self.tol = toler

self.m = shape(dataMatIn)[0]

self.alphas = mat(zeros((self.m,1)))

self.b = 0

self.eCache = mat(zeros((self.m,2))) #first column is valid flag

def calcEkK(oS, k):

fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b

Ek = fXk - float(oS.labelMat[k])

return Ek

def selectJK(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej

maxK = -1; maxDeltaE = 0; Ej = 0

oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E

validEcacheList = nonzero(oS.eCache[:,0].A)[0]

if (len(validEcacheList)) > 1:

for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E

if k == i: continue #don't calc for i, waste of time

Ek = calcEk(oS, k)

deltaE = abs(Ei - Ek)

if (deltaE > maxDeltaE):

maxK = k; maxDeltaE = deltaE; Ej = Ek

return maxK, Ej

else: #in this case (first time around) we don't have any valid eCache values

j = selectJrand(i, oS.m)

Ej = calcEk(oS, j)

return j, Ej

def updateEkK(oS, k):#after any alpha has changed update the new value in the cache

Ek = calcEk(oS, k)

oS.eCache[k] = [1,Ek]

def innerLK(i, oS):

Ei = calcEk(oS, i)

if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):

j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand

alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();

if (oS.labelMat[i] != oS.labelMat[j]):

L = max(0, oS.alphas[j] - oS.alphas[i])

H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])

else:

L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)

H = min(oS.C, oS.alphas[j] + oS.alphas[i])

if L==H: print "L==H"; return 0

eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T

if eta >= 0: print "eta>=0"; return 0

oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta

oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)

updateEk(oS, j) #added this for the Ecache

if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0

oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j

updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction

b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T

b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T

if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1

elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2

else: oS.b = (b1 + b2)/2.0

return 1

else: return 0

def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMO

oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)

iter = 0

entireSet = True; alphaPairsChanged = 0

while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):

alphaPairsChanged = 0

if entireSet: #go over all

for i in range(oS.m):

alphaPairsChanged += innerL(i,oS)

print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)

iter += 1

else:#go over non-bound (railed) alphas

nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]

for i in nonBoundIs:

alphaPairsChanged += innerL(i,oS)

print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)

iter += 1

if entireSet: entireSet = False #toggle entire set loop

elif (alphaPairsChanged == 0): entireSet = True

print "iteration number: %d" % iter

return oS.b,oS.alphas

運行結果如(圖八)所示:

(圖八)

上面代碼有興趣的可以讀讀,用的話,建議使用libsvm。

參考文獻:

[1]machine learning in action. PeterHarrington

[2] pattern recognition and machinelearning. Christopher M. Bishop

[3]machine learning.Andrew Ng

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。

總結

以上是生活随笔為你收集整理的python相关参考文献_python机器学习理论与实战(六)支持向量机的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 狠狠干2021 | 日韩中文字幕一区 | 麻豆自拍偷拍 | 女人免费视频 | 亚洲精品黄| 天堂av8在线 | 成人黄色短片 | 激情婷婷色 | 亚洲激情社区 | 中文字幕第页 | 欧美成人免费在线 | 男女日批视频 | 欧美精品一区二区蜜桃 | 国产一区二区三区在线视频观看 | 国产操操操 | 麻豆av剧情 | 在线观看中文字幕第一页 | 放荡闺蜜高h苏桃情事h | 日韩欧美大陆 | 亚洲综合热 | 麻豆视频免费版 | 一本大道东京热无码aⅴ | 久久久久97 | 免费看黄色三级三级 | 欧美最猛性xxxxx(亚洲精品) | 日韩v在线 | 69国产成人精品二区 | 成人在线免费小视频 | 欧美日韩在线免费观看 | 妞干网av| 午夜剧场免费观看 | 久久一区av| 天堂网一区二区三区 | 日本精品一区二区视频 | 天天干天天操天天摸 | 国产视频aaa | 国产真实的和子乱拍在线观看 | 岛国一区二区三区 | 亚洲AV无码国产精品播放在线 | 57pao国产成永久免费视频 | 日韩欧美国产中文字幕 | 奇米99| 中文字幕在线播放日韩 | 成年人看的视频网站 | 国产黄色片免费看 | 黄页网站免费在线观看 | 免费看国产视频 | 九七影院在线观看免费观看电视 | a天堂最新地址 | 国产农村妇女aaaaa视频 | 性猛交xxxx| 澳门久久 | 久久久久国产精品午夜一区 | 无码国产精品一区二区免费16 | 日日干夜 | 美女又黄又免费 | www.香蕉网| a级无毛片 | 日日噜噜夜夜狠狠久久波多野 | 99久久久国产精品 | 国产成人福利 | www三级 | 麻豆tv在线观看 | 久久久久久久久久一区 | 国产高清不卡一区 | 韩国三级hd中文字幕叫床浴室 | 久久综合色鬼 | 精品少妇人妻一区二区黑料社区 | 亚洲五月天综合 | 欧美一级免费观看 | 国产网红av | 中文字幕中文在线 | 色播一区二区 | 久久久久久久久久久久久女国产乱 | 欧美精品免费在线 | 九九精品在线观看视频 | 依人成人综合网 | 人与动物av| 国产精品99精品久久免费 | h欧美| 欧美 日韩 国产 成人 在线 91 | 中文字幕一区二区三区人妻四季 | 欧美激情在线看 | 国产偷人妻精品一区二区在线 | 欧美丰满少妇人妻精品 | 福利电影一区 | 99资源在线 | 欧美精品一区二区蜜臀亚洲 | 日本少妇videos高潮 | 四级毛片 | 国产成人一区 | 最新av网址在线观看 | www.香蕉视频在线观看 | 国产伦精品一区二区三区视频黑人 | 夜夜撸小说 | 精久久久久久 | xxxx日本高清 | 少妇做爰免费视看片 | 综合激情五月婷婷 |