日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

object detection

發布時間:2025/3/20 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 object detection 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

原地址:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html

Object Detection

?Published:?09 Oct 2015??Category:?deep_learning

Jump to...

  • Papers
  • R-CNN
  • Fast R-CNN
  • Faster R-CNN
  • Light-Head R-CNN
  • Cascade R-CNN
  • MultiBox
  • SPP-Net
  • DeepID-Net
  • MR-CNN
  • YOLO
  • YOLOv2
  • DenseBox
  • SSD
  • DSSD
  • FSSD
  • Inside-Outside Net (ION)
  • CRAFT
  • OHEM
  • R-FCN
  • MS-CNN
  • PVANET
  • GBD-Net
  • StuffNet
  • Feature Pyramid Network (FPN)
  • DSOD
  • MegDet
  • NMS
  • Weakly Supervised Object Detection
  • Detection From Video
  • Object Detection in 3D
  • Object Detection on RGB-D
  • Salient Object Detection
  • Saliency Detection in Video
  • Visual Relationship Detection
  • Face Deteciton
  • UnitBox
  • MTCNN
  • Facial Point / Landmark Detection
  • People Detection
  • Person Head Detection
  • Pedestrian Detection
  • Vehicle Detection
  • Traffic-Sign Detection
  • Boundary / Edge / Contour Detection
  • Skeleton Detection
  • Fruit Detection
  • Shadow Detection
  • Others Deteciton
  • Object Proposal
  • Localization
  • Tutorials / Talks
  • Projects
  • Leaderboard
  • Tools
  • Blogs
  • MethodVOC2007VOC2010VOC2012ILSVRC 2013MSCOCO 2015Speed
    OverFeat???24.3%??
    R-CNN (AlexNet)58.5%53.7%53.3%31.4%??
    R-CNN (VGG16)66.0%?????
    SPP_net(ZF-5)54.2%(1-model), 60.9%(2-model)??31.84%(1-model), 35.11%(6-model)??
    DeepID-Net64.1%??50.3%??
    NoC73.3%?68.8%???
    Fast-RCNN (VGG16)70.0%68.8%68.4%?19.7%(@[0.5-0.95]), 35.9%(@0.5)?
    MR-CNN78.2%?73.9%???
    Faster-RCNN (VGG16)78.8%?75.9%?21.9%(@[0.5-0.95]), 42.7%(@0.5)198ms
    Faster-RCNN (ResNet-101)85.6%?83.8%?37.4%(@[0.5-0.95]), 59.0%(@0.5)?
    YOLO63.4%?57.9%??45 fps
    YOLO VGG-1666.4%????21 fps
    YOLOv2 544 × 54478.6%?73.4%?21.6%(@[0.5-0.95]), 44.0%(@0.5)40 fps
    SSD300 (VGG16)77.2%?75.8%?25.1%(@[0.5-0.95]), 43.1%(@0.5)46 fps
    SSD512 (VGG16)79.8%?78.5%?28.8%(@[0.5-0.95]), 48.5%(@0.5)19 fps
    ION79.2%?76.4%???
    CRAFT75.7%?71.3%48.5%??
    OHEM78.9%?76.3%?25.5%(@[0.5-0.95]), 45.9%(@0.5)?
    R-FCN (ResNet-50)77.4%????0.12sec(K40), 0.09sec(TitianX)
    R-FCN (ResNet-101)79.5%????0.17sec(K40), 0.12sec(TitianX)
    R-FCN (ResNet-101),multi sc train83.6%?82.0%?31.5%(@[0.5-0.95]), 53.2%(@0.5)?
    PVANet 9.089.8%?84.2%??750ms(CPU), 46ms(TitianX)

    Papers

    Deep Neural Networks for Object Detection

    • paper:?http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

    OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

    • arxiv:?http://arxiv.org/abs/1312.6229
    • github:?https://github.com/sermanet/OverFeat
    • code:?http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

    R-CNN

    Rich feature hierarchies for accurate object detection and semantic segmentation

    • intro: R-CNN
    • arxiv:?http://arxiv.org/abs/1311.2524
    • supp:?http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
    • slides:?http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
    • slides:?http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
    • github:?https://github.com/rbgirshick/rcnn
    • notes:?http://zhangliliang.com/2014/07/23/paper-note-rcnn/
    • caffe-pr(“Make R-CNN the Caffe detection example”):?https://github.com/BVLC/caffe/pull/482

    Fast R-CNN

    Fast R-CNN

    • arxiv:?http://arxiv.org/abs/1504.08083
    • slides:?http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
    • github:?https://github.com/rbgirshick/fast-rcnn
    • github(COCO-branch):?https://github.com/rbgirshick/fast-rcnn/tree/coco
    • webcam demo:?https://github.com/rbgirshick/fast-rcnn/pull/29
    • notes:?http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
    • notes:?http://blog.csdn.net/linj_m/article/details/48930179
    • github(“Fast R-CNN in MXNet”):?https://github.com/precedenceguo/mx-rcnn
    • github:?https://github.com/mahyarnajibi/fast-rcnn-torch
    • github:?https://github.com/apple2373/chainer-simple-fast-rnn
    • github:?https://github.com/zplizzi/tensorflow-fast-rcnn

    A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

    • intro: CVPR 2017
    • arxiv:?https://arxiv.org/abs/1704.03414
    • paper:?http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf
    • github(Caffe):?https://github.com/xiaolonw/adversarial-frcnn

    Faster R-CNN

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    • intro: NIPS 2015
    • arxiv:?http://arxiv.org/abs/1506.01497
    • gitxiv:?http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
    • slides:?http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
    • github(official, Matlab):?https://github.com/ShaoqingRen/faster_rcnn
    • github:?https://github.com/rbgirshick/py-faster-rcnn
    • github:?https://github.com/mitmul/chainer-faster-rcnn
    • github:?https://github.com/andreaskoepf/faster-rcnn.torch
    • github:?https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
    • github:?https://github.com/smallcorgi/Faster-RCNN_TF
    • github:?https://github.com/CharlesShang/TFFRCNN
    • github(C++ demo):?https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
    • github:?https://github.com/yhenon/keras-frcnn
    • github:?https://github.com/Eniac-Xie/faster-rcnn-resnet?-github(C++):?https://github.com/D-X-Y/caffe-faster-rcnn/tree/dev

    R-CNN minus R

    • arxiv:?http://arxiv.org/abs/1506.06981

    Faster R-CNN in MXNet with distributed implementation and data parallelization

    • github:?https://github.com/dmlc/mxnet/tree/master/example/rcnn

    Contextual Priming and Feedback for Faster R-CNN

    • intro: ECCV 2016. Carnegie Mellon University
    • paper:?http://abhinavsh.info/context_priming_feedback.pdf
    • poster:?http://www.eccv2016.org/files/posters/P-1A-20.pdf

    An Implementation of Faster RCNN with Study for Region Sampling

    • intro: Technical Report, 3 pages. CMU
    • arxiv:?https://arxiv.org/abs/1702.02138
    • github:?https://github.com/endernewton/tf-faster-rcnn

    Interpretable R-CNN

    • intro: North Carolina State University & Alibaba
    • keywords: AND-OR Graph (AOG)
    • arxiv:?https://arxiv.org/abs/1711.05226

    Light-Head R-CNN

    Light-Head R-CNN: In Defense of Two-Stage Object Detector

    • intro: Tsinghua University & Megvii Inc
    • arxiv:?https://arxiv.org/abs/1711.07264
    • github:?https://github.com/terrychenism/Deformable-ConvNets/blob/master/rfcn/symbols/resnet_v1_101_rfcn_light.py#L784

    Cascade R-CNN

    Cascade R-CNN: Delving into High Quality Object Detection

    https://arxiv.org/abs/1712.00726?https://github.com/zhaoweicai/cascade-rcnn


    MultiBox

    Scalable Object Detection using Deep Neural Networks

    • intro: first MultiBox. Train a CNN to predict Region of Interest.
    • arxiv:?http://arxiv.org/abs/1312.2249
    • github:?https://github.com/google/multibox
    • blog:?https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

    Scalable, High-Quality Object Detection

    • intro: second MultiBox
    • arxiv:?http://arxiv.org/abs/1412.1441
    • github:?https://github.com/google/multibox

    SPP-Net

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    • intro: ECCV 2014 / TPAMI 2015
    • arxiv:?http://arxiv.org/abs/1406.4729
    • github:?https://github.com/ShaoqingRen/SPP_net
    • notes:?http://zhangliliang.com/2014/09/13/paper-note-sppnet/

    DeepID-Net

    DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

    • intro: PAMI 2016
    • intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
    • project page:?http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html
    • arxiv:?http://arxiv.org/abs/1412.5661

    Object Detectors Emerge in Deep Scene CNNs

    • intro: ICLR 2015
    • arxiv:?http://arxiv.org/abs/1412.6856
    • paper:?https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
    • paper:?https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
    • slides:?http://places.csail.mit.edu/slide_iclr2015.pdf

    segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

    • intro: CVPR 2015
    • project(code+data):?https://www.cs.toronto.edu/~yukun/segdeepm.html
    • arxiv:?https://arxiv.org/abs/1502.04275
    • github:?https://github.com/YknZhu/segDeepM

    Object Detection Networks on Convolutional Feature Maps

    • intro: TPAMI 2015
    • keywords: NoC
    • arxiv:?http://arxiv.org/abs/1504.06066

    Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

    • arxiv:?http://arxiv.org/abs/1504.03293
    • slides:?http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
    • github:?https://github.com/YutingZhang/fgs-obj

    DeepBox: Learning Objectness with Convolutional Networks

    • keywords: DeepBox
    • arxiv:?http://arxiv.org/abs/1505.02146
    • github:?https://github.com/weichengkuo/DeepBox

    MR-CNN

    Object detection via a multi-region & semantic segmentation-aware CNN model

    • intro: ICCV 2015. MR-CNN
    • arxiv:?http://arxiv.org/abs/1505.01749
    • github:?https://github.com/gidariss/mrcnn-object-detection
    • notes:?http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/
    • notes:?http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/

    YOLO

    You Only Look Once: Unified, Real-Time Object Detection

    • arxiv:?http://arxiv.org/abs/1506.02640
    • code:?http://pjreddie.com/darknet/yolo/
    • github:?https://github.com/pjreddie/darknet
    • blog:?https://pjreddie.com/publications/yolo/
    • slides:?https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p
    • reddit:?https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
    • github:?https://github.com/gliese581gg/YOLO_tensorflow
    • github:?https://github.com/xingwangsfu/caffe-yolo
    • github:?https://github.com/frankzhangrui/Darknet-Yolo
    • github:?https://github.com/BriSkyHekun/py-darknet-yolo
    • github:?https://github.com/tommy-qichang/yolo.torch
    • github:?https://github.com/frischzenger/yolo-windows
    • github:?https://github.com/AlexeyAB/yolo-windows
    • github:?https://github.com/nilboy/tensorflow-yolo

    darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

    • blog:?https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp
    • github:?https://github.com/thtrieu/darkflow

    Start Training YOLO with Our Own Data

    • intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
    • blog:?http://guanghan.info/blog/en/my-works/train-yolo/
    • github:?https://github.com/Guanghan/darknet

    YOLO: Core ML versus MPSNNGraph

    • intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
    • blog:?http://machinethink.net/blog/yolo-coreml-versus-mps-graph/
    • github:?https://github.com/hollance/YOLO-CoreML-MPSNNGraph

    TensorFlow YOLO object detection on Android

    • intro: Real-time object detection on Android using the YOLO network with TensorFlow
    • github:?https://github.com/natanielruiz/android-yolo

    Computer Vision in iOS – Object Detection

    • blog:?https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/
    • github:https://github.com/r4ghu/iOS-CoreML-Yolo

    YOLOv2

    YOLO9000: Better, Faster, Stronger

    • arxiv:?https://arxiv.org/abs/1612.08242
    • code:?http://pjreddie.com/yolo9000/
    • github(Chainer):?https://github.com/leetenki/YOLOv2
    • github(Keras):?https://github.com/allanzelener/YAD2K
    • github(PyTorch):?https://github.com/longcw/yolo2-pytorch
    • github(Tensorflow):?https://github.com/hizhangp/yolo_tensorflow
    • github(Windows):?https://github.com/AlexeyAB/darknet
    • github:?https://github.com/choasUp/caffe-yolo9000
    • github:?https://github.com/philipperemy/yolo-9000

    Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

    • github:?https://github.com/AlexeyAB/Yolo_mark

    LightNet: Bringing pjreddie’s DarkNet out of the shadows

    https://github.com//explosion/lightnet


    AttentionNet: Aggregating Weak Directions for Accurate Object Detection

    • intro: ICCV 2015
    • intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task
    • arxiv:?http://arxiv.org/abs/1506.07704
    • slides:?https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf
    • slides:?http://image-net.org/challenges/talks/lunit-kaist-slide.pdf

    DenseBox

    DenseBox: Unifying Landmark Localization with End to End Object Detection

    • arxiv:?http://arxiv.org/abs/1509.04874
    • demo:?http://pan.baidu.com/s/1mgoWWsS
    • KITTI result:?http://www.cvlibs.net/datasets/kitti/eval_object.php

    SSD

    SSD: Single Shot MultiBox Detector

    • intro: ECCV 2016 Oral
    • arxiv:?http://arxiv.org/abs/1512.02325
    • paper:?http://www.cs.unc.edu/~wliu/papers/ssd.pdf
    • slides:?http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf
    • github(Official):?https://github.com/weiliu89/caffe/tree/ssd
    • video:?http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
    • github:?https://github.com/zhreshold/mxnet-ssd
    • github:?https://github.com/zhreshold/mxnet-ssd.cpp
    • github:?https://github.com/rykov8/ssd_keras
    • github:?https://github.com/balancap/SSD-Tensorflow
    • github:?https://github.com/amdegroot/ssd.pytorch
    • github(Caffe):?https://github.com/chuanqi305/MobileNet-SSD

    What’s the diffience in performance between this new code you pushed and the previous code? #327

    https://github.com/weiliu89/caffe/issues/327

    Enhancement of SSD by concatenating feature maps for object detection

    • intro: rainbow SSD (R-SSD)
    • arxiv:?https://arxiv.org/abs/1705.09587

    DSSD

    DSSD : Deconvolutional Single Shot Detector

    • intro: UNC Chapel Hill & Amazon Inc
    • arxiv:?https://arxiv.org/abs/1701.06659
    • github:?https://github.com/chengyangfu/caffe/tree/dssd
    • demo:?http://120.52.72.53/www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4

    Context-aware Single-Shot Detector

    • keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
    • arxiv:?https://arxiv.org/abs/1707.08682

    Feature-Fused SSD: Fast Detection for Small Objects

    https://arxiv.org/abs/1709.05054

    FSSD

    FSSD: Feature Fusion Single Shot Multibox Detector

    https://arxiv.org/abs/1712.00960

    Inside-Outside Net (ION)

    Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

    • intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.
    • arxiv:?http://arxiv.org/abs/1512.04143
    • slides:?http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf
    • coco-leaderboard:?http://mscoco.org/dataset/#detections-leaderboard

    Adaptive Object Detection Using Adjacency and Zoom Prediction

    • intro: CVPR 2016. AZ-Net
    • arxiv:?http://arxiv.org/abs/1512.07711
    • github:?https://github.com/luyongxi/az-net
    • youtube:?https://www.youtube.com/watch?v=YmFtuNwxaNM

    G-CNN: an Iterative Grid Based Object Detector

    • arxiv:?http://arxiv.org/abs/1512.07729

    Factors in Finetuning Deep Model for object detection

    Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

    • intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection
    • project page:?http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html
    • arxiv:?http://arxiv.org/abs/1601.05150

    We don’t need no bounding-boxes: Training object class detectors using only human verification

    • arxiv:?http://arxiv.org/abs/1602.08405

    HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

    • arxiv:?http://arxiv.org/abs/1604.00600

    A MultiPath Network for Object Detection

    • intro: BMVC 2016. Facebook AI Research (FAIR)
    • arxiv:?http://arxiv.org/abs/1604.02135
    • github:?https://github.com/facebookresearch/multipathnet

    CRAFT

    CRAFT Objects from Images

    • intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN
    • project page:?http://byangderek.github.io/projects/craft.html
    • arxiv:?https://arxiv.org/abs/1604.03239
    • paper:?http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf
    • github:?https://github.com/byangderek/CRAFT

    OHEM

    Training Region-based Object Detectors with Online Hard Example Mining

    • intro: CVPR 2016 Oral. Online hard example mining (OHEM)
    • arxiv:?http://arxiv.org/abs/1604.03540
    • paper:?http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf
    • github(Official):?https://github.com/abhi2610/ohem
    • author page:?http://abhinav-shrivastava.info/

    S-OHEM: Stratified Online Hard Example Mining for Object Detection

    https://arxiv.org/abs/1705.02233


    Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

    • intro: CVPR 2016
    • keywords: scale-dependent pooling (SDP), cascaded rejection classifiers (CRC)
    • paper:?http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf

    R-FCN

    R-FCN: Object Detection via Region-based Fully Convolutional Networks

    • arxiv:?http://arxiv.org/abs/1605.06409
    • github:?https://github.com/daijifeng001/R-FCN
    • github:?https://github.com/Orpine/py-R-FCN
    • github:?https://github.com/PureDiors/pytorch_RFCN
    • github:?https://github.com/bharatsingh430/py-R-FCN-multiGPU
    • github:?https://github.com/xdever/RFCN-tensorflow

    R-FCN-3000 at 30fps: Decoupling Detection and Classification

    https://arxiv.org/abs/1712.01802

    Recycle deep features for better object detection

    • arxiv:?http://arxiv.org/abs/1607.05066

    MS-CNN

    A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

    • intro: ECCV 2016
    • intro: 640×480: 15 fps, 960×720: 8 fps
    • arxiv:?http://arxiv.org/abs/1607.07155
    • github:?https://github.com/zhaoweicai/mscnn
    • poster:?http://www.eccv2016.org/files/posters/P-2B-38.pdf

    Multi-stage Object Detection with Group Recursive Learning

    • intro: VOC2007: 78.6%, VOC2012: 74.9%
    • arxiv:?http://arxiv.org/abs/1608.05159

    Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

    • intro: WACV 2017. SubCNN
    • arxiv:?http://arxiv.org/abs/1604.04693
    • github:?https://github.com/tanshen/SubCNN

    PVANET

    PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

    • intro: “less channels with more layers”, concatenated ReLU, Inception, and HyperNet, batch normalization, residual connections
    • arxiv:?http://arxiv.org/abs/1608.08021
    • github:?https://github.com/sanghoon/pva-faster-rcnn
    • leaderboard(PVANet 9.0):?http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

    PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

    • intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of?arXiv:1608.08021
    • arxiv:?https://arxiv.org/abs/1611.08588

    GBD-Net

    Gated Bi-directional CNN for Object Detection

    • intro: The Chinese University of Hong Kong & Sensetime Group Limited
    • paper:?http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22
    • mirror:?https://pan.baidu.com/s/1dFohO7v

    Crafting GBD-Net for Object Detection

    • intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo
    • intro: gated bi-directional CNN (GBD-Net)
    • arxiv:?https://arxiv.org/abs/1610.02579
    • github:?https://github.com/craftGBD/craftGBD

    StuffNet

    StuffNet: Using ‘Stuff’ to Improve Object Detection

    • arxiv:?https://arxiv.org/abs/1610.05861

    Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

    • arxiv:?https://arxiv.org/abs/1610.09609

    Hierarchical Object Detection with Deep Reinforcement Learning

    • intro: Deep Reinforcement Learning Workshop (NIPS 2016)
    • project page:?https://imatge-upc.github.io/detection-2016-nipsws/
    • arxiv:?https://arxiv.org/abs/1611.03718
    • slides:?http://www.slideshare.net/xavigiro/hierarchical-object-detection-with-deep-reinforcement-learning
    • github:?https://github.com/imatge-upc/detection-2016-nipsws
    • blog:?http://jorditorres.org/nips/

    Learning to detect and localize many objects from few examples

    • arxiv:?https://arxiv.org/abs/1611.05664

    Speed/accuracy trade-offs for modern convolutional object detectors

    • intro: CVPR 2017. Google Research
    • arxiv:?https://arxiv.org/abs/1611.10012

    SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

    • arxiv:?https://arxiv.org/abs/1612.01051
    • github:?https://github.com/BichenWuUCB/squeezeDet
    • github:?https://github.com/fregu856/2D_detection

    Feature Pyramid Network (FPN)

    Feature Pyramid Networks for Object Detection

    • intro: Facebook AI Research
    • arxiv:?https://arxiv.org/abs/1612.03144

    Action-Driven Object Detection with Top-Down Visual Attentions

    • arxiv:?https://arxiv.org/abs/1612.06704

    Beyond Skip Connections: Top-Down Modulation for Object Detection

    • intro: CMU & UC Berkeley & Google Research
    • arxiv:?https://arxiv.org/abs/1612.06851

    Wide-Residual-Inception Networks for Real-time Object Detection

    • intro: Inha University
    • arxiv:?https://arxiv.org/abs/1702.01243

    Attentional Network for Visual Object Detection

    • intro: University of Maryland & Mitsubishi Electric Research Laboratories
    • arxiv:?https://arxiv.org/abs/1702.01478

    Learning Chained Deep Features and Classifiers for Cascade in Object Detection

    • keykwords: CC-Net
    • intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
    • arxiv:?https://arxiv.org/abs/1702.07054

    DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

    https://arxiv.org/abs/1703.10295

    Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

    • intro: CVPR 2017
    • arxiv:?https://arxiv.org/abs/1704.03944

    Spatial Memory for Context Reasoning in Object Detection

    • arxiv:?https://arxiv.org/abs/1704.04224

    Accurate Single Stage Detector Using Recurrent Rolling Convolution

    • intro: CVPR 2017. SenseTime
    • keywords: Recurrent Rolling Convolution (RRC)
    • arxiv:?https://arxiv.org/abs/1704.05776
    • github:?https://github.com/xiaohaoChen/rrc_detection

    Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

    https://arxiv.org/abs/1704.05775

    LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

    • intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
    • arxiv:?https://arxiv.org/abs/1705.05922

    Point Linking Network for Object Detection

    • intro: Point Linking Network (PLN)
    • arxiv:?https://arxiv.org/abs/1706.03646

    Perceptual Generative Adversarial Networks for Small Object Detection

    https://arxiv.org/abs/1706.05274

    Few-shot Object Detection

    https://arxiv.org/abs/1706.08249

    Yes-Net: An effective Detector Based on Global Information

    https://arxiv.org/abs/1706.09180

    SMC Faster R-CNN: Toward a scene-specialized multi-object detector

    https://arxiv.org/abs/1706.10217

    Towards lightweight convolutional neural networks for object detection

    https://arxiv.org/abs/1707.01395

    RON: Reverse Connection with Objectness Prior Networks for Object Detection

    • intro: CVPR 2017
    • arxiv:?https://arxiv.org/abs/1707.01691
    • github:?https://github.com/taokong/RON

    Mimicking Very Efficient Network for Object Detection

    • intro: CVPR 2017. SenseTime & Beihang University
    • paper:?http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf

    Residual Features and Unified Prediction Network for Single Stage Detection

    https://arxiv.org/abs/1707.05031

    Deformable Part-based Fully Convolutional Network for Object Detection

    • intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
    • arxiv:?https://arxiv.org/abs/1707.06175

    Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

    • intro: ICCV 2017
    • arxiv:?https://arxiv.org/abs/1707.06399

    Recurrent Scale Approximation for Object Detection in CNN

    • intro: ICCV 2017
    • keywords: Recurrent Scale Approximation (RSA)
    • arxiv:?https://arxiv.org/abs/1707.09531
    • github:?https://github.com/sciencefans/RSA-for-object-detection

    DSOD

    DSOD: Learning Deeply Supervised Object Detectors from Scratch

    • intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
    • arxiv:?https://arxiv.org/abs/1708.01241
    • github:?https://github.com/szq0214/DSOD

    Focal Loss for Dense Object Detection

    • intro: ICCV 2017 Best student paper award. Facebook AI Research
    • keywords: RetinaNet
    • arxiv:?https://arxiv.org/abs/1708.02002

    CoupleNet: Coupling Global Structure with Local Parts for Object Detection

    • intro: ICCV 2017
    • arxiv:?https://arxiv.org/abs/1708.02863

    Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

    https://arxiv.org/abs/1709.04347

    StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

    https://arxiv.org/abs/1709.05788

    Dynamic Zoom-in Network for Fast Object Detection in Large Images

    https://arxiv.org/abs/1711.05187

    Zero-Annotation Object Detection with Web Knowledge Transfer

    • intro: NTU, Singapore & Amazon
    • keywords: multi-instance multi-label domain adaption learning framework
    • arxiv:?https://arxiv.org/abs/1711.05954

    MegDet

    MegDet: A Large Mini-Batch Object Detector

    • intro: Peking University & Tsinghua University & Megvii Inc
    • arxiv:?https://arxiv.org/abs/1711.07240

    Single-Shot Refinement Neural Network for Object Detection

    • arxiv:?https://arxiv.org/abs/1711.06897
    • github:?https://github.com/sfzhang15/RefineDet

    Receptive Field Block Net for Accurate and Fast Object Detection

    • intro: RFBNet
    • arxiv:?https://arxiv.org/abs/1711.07767
    • github:?https://github.com//ruinmessi/RFBNet

    An Analysis of Scale Invariance in Object Detection - SNIP

    • arxiv:?https://arxiv.org/abs/1711.08189
    • github:?https://github.com/bharatsingh430/snip

    Feature Selective Networks for Object Detection

    https://arxiv.org/abs/1711.08879

    Learning a Rotation Invariant Detector with Rotatable Bounding Box

    • arxiv:?https://arxiv.org/abs/1711.09405
    • github:?https://github.com/liulei01/DRBox

    Scalable Object Detection for Stylized Objects

    • intro: Microsoft AI & Research Munich
    • arxiv:?https://arxiv.org/abs/1711.09822

    Relation Networks for Object Detection

    https://arxiv.org/abs/1711.11575

    Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

    • arxiv:?https://arxiv.org/abs/1712.00886
    • github:?https://github.com/szq0214/GRP-DSOD

    Deep Regionlets for Object Detection

    • keywords: region selection network, gating network
    • arxiv:?https://arxiv.org/abs/1712.02408

    Adversarial Examples that Fool Detectors

    https://arxiv.org/abs/1712.02494

    NMS

    End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression

    • intro: CVPR 2015
    • arxiv:?http://arxiv.org/abs/1411.5309
    • paper:?http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wan_End-to-End_Integration_of_2015_CVPR_paper.pdf

    A convnet for non-maximum suppression

    • arxiv:?http://arxiv.org/abs/1511.06437

    Improving Object Detection With One Line of Code

    Soft-NMS – Improving Object Detection With One Line of Code

    • intro: ICCV 2017. University of Maryland
    • keywords: Soft-NMS
    • arxiv:?https://arxiv.org/abs/1704.04503
    • github:?https://github.com/bharatsingh430/soft-nms

    Learning non-maximum suppression

    https://arxiv.org/abs/1705.02950

    Weakly Supervised Object Detection

    Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

    • intro: CVPR 2016
    • arxiv:?http://arxiv.org/abs/1604.05766

    Weakly supervised object detection using pseudo-strong labels

    • arxiv:?http://arxiv.org/abs/1607.04731

    Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

    • intro: IJCAI 2017
    • arxiv:?https://arxiv.org/abs/1706.06768

    Detection From Video

    Learning Object Class Detectors from Weakly Annotated Video

    • intro: CVPR 2012
    • paper:?https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf

    Analysing domain shift factors between videos and images for object detection

    • arxiv:?https://arxiv.org/abs/1501.01186

    Video Object Recognition

    • slides:?http://vision.princeton.edu/courses/COS598/2015sp/slides/VideoRecog/Video%20Object%20Recognition.pptx

    Deep Learning for Saliency Prediction in Natural Video

    • intro: Submitted on 12 Jan 2016
    • keywords: Deep learning, saliency map, optical flow, convolution network, contrast features
    • paper:?https://hal.archives-ouvertes.fr/hal-01251614/document

    T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

    • intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task
    • arxiv:?http://arxiv.org/abs/1604.02532
    • github:?https://github.com/myfavouritekk/T-CNN

    Object Detection from Video Tubelets with Convolutional Neural Networks

    • intro: CVPR 2016 Spotlight paper
    • arxiv:?https://arxiv.org/abs/1604.04053
    • paper:?http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf
    • gihtub:?https://github.com/myfavouritekk/vdetlib

    Object Detection in Videos with Tubelets and Multi-context Cues

    • intro: SenseTime Group
    • slides:?http://www.ee.cuhk.edu.hk/~xgwang/CUvideo.pdf
    • slides:?http://image-net.org/challenges/talks/Object%20Detection%20in%20Videos%20with%20Tubelets%20and%20Multi-context%20Cues%20-%20Final.pdf

    Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

    • intro: BMVC 2016
    • keywords: pseudo-labeler
    • arxiv:?http://arxiv.org/abs/1607.04648
    • paper:?http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf

    CNN Based Object Detection in Large Video Images

    • intro: WangTao @ 愛奇藝
    • keywords: object retrieval, object detection, scene classification
    • slides:?http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf

    Object Detection in Videos with Tubelet Proposal Networks

    • arxiv:?https://arxiv.org/abs/1702.06355

    Flow-Guided Feature Aggregation for Video Object Detection

    • intro: MSRA
    • arxiv:?https://arxiv.org/abs/1703.10025

    Video Object Detection using Faster R-CNN

    • blog:?http://andrewliao11.github.io/object_detection/faster_rcnn/
    • github:?https://github.com/andrewliao11/py-faster-rcnn-imagenet

    Improving Context Modeling for Video Object Detection and Tracking

    http://image-net.org/challenges/talks_2017/ilsvrc2017_short(poster).pdf

    Temporal Dynamic Graph LSTM for Action-driven Video Object Detection

    • intro: ICCV 2017
    • arxiv:?https://arxiv.org/abs/1708.00666

    Mobile Video Object Detection with Temporally-Aware Feature Maps

    https://arxiv.org/abs/1711.06368

    Towards High Performance Video Object Detection

    https://arxiv.org/abs/1711.11577

    Object Detection in 3D

    Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

    • arxiv:?https://arxiv.org/abs/1609.06666

    Object Detection on RGB-D

    Learning Rich Features from RGB-D Images for Object Detection and Segmentation

    • arxiv:?http://arxiv.org/abs/1407.5736

    Differential Geometry Boosts Convolutional Neural Networks for Object Detection

    • intro: CVPR 2016
    • paper:?http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w23/html/Wang_Differential_Geometry_Boosts_CVPR_2016_paper.html

    A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation

    https://arxiv.org/abs/1703.03347

    Salient Object Detection

    This task involves predicting the salient regions of an image given by human eye fixations.

    Best Deep Saliency Detection Models (CVPR 2016 & 2015)

    http://i.cs.hku.hk/~yzyu/vision.html

    Large-scale optimization of hierarchical features for saliency prediction in natural images

    • paper:?http://coxlab.org/pdfs/cvpr2014_vig_saliency.pdf

    Predicting Eye Fixations using Convolutional Neural Networks

    • paper:?http://www.escience.cn/system/file?fileId=72648

    Saliency Detection by Multi-Context Deep Learning

    • paper:?http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf

    DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

    • arxiv:?http://arxiv.org/abs/1510.05484

    SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

    • paper:?www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html

    Shallow and Deep Convolutional Networks for Saliency Prediction

    • intro: CVPR 2016
    • arxiv:?http://arxiv.org/abs/1603.00845
    • github:?https://github.com/imatge-upc/saliency-2016-cvpr

    Recurrent Attentional Networks for Saliency Detection

    • intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN)
    • arxiv:?http://arxiv.org/abs/1604.03227

    Two-Stream Convolutional Networks for Dynamic Saliency Prediction

    • arxiv:?http://arxiv.org/abs/1607.04730

    Unconstrained Salient Object Detection

    Unconstrained Salient Object Detection via Proposal Subset Optimization

    • intro: CVPR 2016
    • project page:?http://cs-people.bu.edu/jmzhang/sod.html
    • paper:?http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf
    • github:?https://github.com/jimmie33/SOD
    • caffe model zoo:?https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-object-proposal-models-for-salient-object-detection

    DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

    • paper:?http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf

    Salient Object Subitizing

    • intro: CVPR 2015
    • intro: predicting the existence and the number of salient objects in an image using holistic cues
    • project page:?http://cs-people.bu.edu/jmzhang/sos.html
    • arxiv:?http://arxiv.org/abs/1607.07525
    • paper:?http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf
    • caffe model zoo:?https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-models-for-salient-object-subitizing

    Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

    • intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN)
    • arxiv:?http://arxiv.org/abs/1608.05177

    Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

    • intro: ECCV 2016
    • arxiv:?http://arxiv.org/abs/1608.05186

    Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

    • arxiv:?http://arxiv.org/abs/1608.08029

    A Deep Multi-Level Network for Saliency Prediction

    • arxiv:?http://arxiv.org/abs/1609.01064

    Visual Saliency Detection Based on Multiscale Deep CNN Features

    • intro: IEEE Transactions on Image Processing
    • arxiv:?http://arxiv.org/abs/1609.02077

    A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

    • intro: DSCLRCN
    • arxiv:?https://arxiv.org/abs/1610.01708

    Deeply supervised salient object detection with short connections

    • arxiv:?https://arxiv.org/abs/1611.04849

    Weakly Supervised Top-down Salient Object Detection

    • intro: Nanyang Technological University
    • arxiv:?https://arxiv.org/abs/1611.05345

    SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

    • project page:?https://imatge-upc.github.io/saliency-salgan-2017/
    • arxiv:?https://arxiv.org/abs/1701.01081

    Visual Saliency Prediction Using a Mixture of Deep Neural Networks

    • arxiv:?https://arxiv.org/abs/1702.00372

    A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network

    • arxiv:?https://arxiv.org/abs/1702.00615

    Saliency Detection by Forward and Backward Cues in Deep-CNNs

    https://arxiv.org/abs/1703.00152

    Supervised Adversarial Networks for Image Saliency Detection

    https://arxiv.org/abs/1704.07242

    Group-wise Deep Co-saliency Detection

    https://arxiv.org/abs/1707.07381

    Towards the Success Rate of One: Real-time Unconstrained Salient Object Detection

    • intro: University of Maryland College Park & eBay Inc
    • arxiv:?https://arxiv.org/abs/1708.00079

    Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection

    • intro: ICCV 2017
    • arixv:?https://arxiv.org/abs/1708.02001

    Learning Uncertain Convolutional Features for Accurate Saliency Detection

    • intro: Accepted as a poster in ICCV 2017
    • arxiv:?https://arxiv.org/abs/1708.02031

    Deep Edge-Aware Saliency Detection

    https://arxiv.org/abs/1708.04366

    Self-explanatory Deep Salient Object Detection

    • intro: National University of Defense Technology, China & National University of Singapore
    • arxiv:?https://arxiv.org/abs/1708.05595

    PiCANet: Learning Pixel-wise Contextual Attention in ConvNets and Its Application in Saliency Detection

    https://arxiv.org/abs/1708.06433

    DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets

    https://arxiv.org/abs/1709.02495

    Saliency Detection in Video

    Deep Learning For Video Saliency Detection

    • arxiv:?https://arxiv.org/abs/1702.00871

    Video Salient Object Detection Using Spatiotemporal Deep Features

    https://arxiv.org/abs/1708.01447

    Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

    https://arxiv.org/abs/1709.06316

    Visual Relationship Detection

    Visual Relationship Detection with Language Priors

    • intro: ECCV 2016 oral
    • paper:?https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf
    • github:?https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection

    ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection

    • intro: Visual Phrase reasoning Convolutional Neural Network (ViP-CNN), Visual Phrase Reasoning Structure (VPRS)
    • arxiv:?https://arxiv.org/abs/1702.07191

    Visual Translation Embedding Network for Visual Relation Detection

    • arxiv:?https://www.arxiv.org/abs/1702.08319

    Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection

    • intro: CVPR 2017 spotlight paper
    • arxiv:?https://arxiv.org/abs/1703.03054

    Detecting Visual Relationships with Deep Relational Networks

    • intro: CVPR 2017 oral. The Chinese University of Hong Kong
    • arxiv:?https://arxiv.org/abs/1704.03114

    Identifying Spatial Relations in Images using Convolutional Neural Networks

    https://arxiv.org/abs/1706.04215

    PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN

    • intro: ICCV
    • arxiv:?https://arxiv.org/abs/1708.01956

    Natural Language Guided Visual Relationship Detection

    https://arxiv.org/abs/1711.06032

    Face Deteciton

    Multi-view Face Detection Using Deep Convolutional Neural Networks

    • intro: Yahoo
    • arxiv:?http://arxiv.org/abs/1502.02766
    • github:?https://github.com/guoyilin/FaceDetection_CNN

    From Facial Parts Responses to Face Detection: A Deep Learning Approach

    • intro: ICCV 2015. CUHK
    • project page:?http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html
    • arxiv:?https://arxiv.org/abs/1509.06451
    • paper:?http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_From_Facial_Parts_ICCV_2015_paper.pdf

    Compact Convolutional Neural Network Cascade for Face Detection

    • arxiv:?http://arxiv.org/abs/1508.01292
    • github:?https://github.com/Bkmz21/FD-Evaluation
    • github:?https://github.com/Bkmz21/CompactCNNCascade

    Face Detection with End-to-End Integration of a ConvNet and a 3D Model

    • intro: ECCV 2016
    • arxiv:?https://arxiv.org/abs/1606.00850
    • github(MXNet):?https://github.com/tfwu/FaceDetection-ConvNet-3D

    CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

    • intro: CMU
    • arxiv:?https://arxiv.org/abs/1606.05413

    Finding Tiny Faces

    • intro: CVPR 2017. CMU
    • project page:?http://www.cs.cmu.edu/~peiyunh/tiny/index.html
    • arxiv:?https://arxiv.org/abs/1612.04402
    • github:?https://github.com/peiyunh/tiny
    • github(inference-only):?https://github.com/chinakook/hr101_mxnet

    Towards a Deep Learning Framework for Unconstrained Face Detection

    • intro: overlap with CMS-RCNN
    • arxiv:?https://arxiv.org/abs/1612.05322

    Supervised Transformer Network for Efficient Face Detection

    • arxiv:?http://arxiv.org/abs/1607.05477

    UnitBox

    UnitBox: An Advanced Object Detection Network

    • intro: ACM MM 2016
    • arxiv:?http://arxiv.org/abs/1608.01471

    Bootstrapping Face Detection with Hard Negative Examples

    • author: 萬韶華 @ 小米.
    • intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset
    • arxiv:?http://arxiv.org/abs/1608.02236

    Grid Loss: Detecting Occluded Faces

    • intro: ECCV 2016
    • arxiv:?https://arxiv.org/abs/1609.00129
    • paper:?http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf
    • poster:?http://www.eccv2016.org/files/posters/P-2A-34.pdf

    A Multi-Scale Cascade Fully Convolutional Network Face Detector

    • intro: ICPR 2016
    • arxiv:?http://arxiv.org/abs/1609.03536

    MTCNN

    Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

    Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

    • project page:?https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
    • arxiv:?https://arxiv.org/abs/1604.02878
    • github(Matlab):?https://github.com/kpzhang93/MTCNN_face_detection_alignment
    • github:?https://github.com/pangyupo/mxnet_mtcnn_face_detection
    • github:?https://github.com/DaFuCoding/MTCNN_Caffe
    • github(MXNet):?https://github.com/Seanlinx/mtcnn
    • github:?https://github.com/Pi-DeepLearning/RaspberryPi-FaceDetection-MTCNN-Caffe-With-Motion
    • github(Caffe):?https://github.com/foreverYoungGitHub/MTCNN
    • github:?https://github.com/CongWeilin/mtcnn-caffe
    • github:?https://github.com/AlphaQi/MTCNN-light

    Face Detection using Deep Learning: An Improved Faster RCNN Approach

    • intro: DeepIR Inc
    • arxiv:?https://arxiv.org/abs/1701.08289

    Faceness-Net: Face Detection through Deep Facial Part Responses

    • intro: An extended version of ICCV 2015 paper
    • arxiv:?https://arxiv.org/abs/1701.08393

    Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”

    • intro: CVPR 2017. MP-RCNN, MP-RPN
    • arxiv:?https://arxiv.org/abs/1703.09145

    End-To-End Face Detection and Recognition

    https://arxiv.org/abs/1703.10818

    Face R-CNN

    https://arxiv.org/abs/1706.01061

    Face Detection through Scale-Friendly Deep Convolutional Networks

    https://arxiv.org/abs/1706.02863

    Scale-Aware Face Detection

    • intro: CVPR 2017. SenseTime & Tsinghua University
    • arxiv:?https://arxiv.org/abs/1706.09876

    Multi-Branch Fully Convolutional Network for Face Detection

    https://arxiv.org/abs/1707.06330

    SSH: Single Stage Headless Face Detector

    • intro: ICCV 2017
    • arxiv:?https://arxiv.org/abs/1708.03979

    Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container

    https://arxiv.org/abs/1708.04370

    FaceBoxes: A CPU Real-time Face Detector with High Accuracy

    • intro: IJCB 2017
    • keywords: Rapidly Digested Convolutional Layers (RDCL), Multiple Scale Convolutional Layers (MSCL)
    • intro: the proposed detector runs at 20 FPS on a single CPU core and 125 FPS using a GPU for VGA-resolution images
    • arxiv:?https://arxiv.org/abs/1708.05234

    S3FD: Single Shot Scale-invariant Face Detector

    • intro: ICCV 2017. Chinese Academy of Sciences
    • intro: can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images
    • arxiv:?https://arxiv.org/abs/1708.05237
    • github:?https://github.com//clcarwin/SFD_pytorch

    Detecting Faces Using Region-based Fully Convolutional Networks

    https://arxiv.org/abs/1709.05256

    AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection

    https://arxiv.org/abs/1709.07326

    Face Attention Network: An effective Face Detector for the Occluded Faces

    https://arxiv.org/abs/1711.07246

    Feature Agglomeration Networks for Single Stage Face Detection

    https://arxiv.org/abs/1712.00721

    Facial Point / Landmark Detection

    Deep Convolutional Network Cascade for Facial Point Detection

    • homepage:?http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm
    • paper:?http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr13.pdf
    • github:?https://github.com/luoyetx/deep-landmark

    Facial Landmark Detection by Deep Multi-task Learning

    • intro: ECCV 2014
    • project page:?http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html
    • paper:?http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf
    • github(Matlab):?https://github.com/zhzhanp/TCDCN-face-alignment

    A Recurrent Encoder-Decoder Network for Sequential Face Alignment

    • intro: ECCV 2016
    • arxiv:?https://arxiv.org/abs/1608.05477

    Detecting facial landmarks in the video based on a hybrid framework

    • arxiv:?http://arxiv.org/abs/1609.06441

    Deep Constrained Local Models for Facial Landmark Detection

    • arxiv:?https://arxiv.org/abs/1611.08657

    Effective face landmark localization via single deep network

    • arxiv:?https://arxiv.org/abs/1702.02719

    A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

    https://arxiv.org/abs/1704.01880

    Deep Alignment Network: A convolutional neural network for robust face alignment

    • intro: CVPRW 2017
    • arxiv:?https://arxiv.org/abs/1706.01789
    • gihtub:?https://github.com/MarekKowalski/DeepAlignmentNetwork

    Joint Multi-view Face Alignment in the Wild

    https://arxiv.org/abs/1708.06023

    FacePoseNet: Making a Case for Landmark-Free Face Alignment

    https://arxiv.org/abs/1708.07517

    Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks

    https://arxiv.org/abs/1711.06753

    People Detection

    End-to-end people detection in crowded scenes

    • arxiv:?http://arxiv.org/abs/1506.04878
    • github:?https://github.com/Russell91/reinspect
    • ipn:?http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb
    • youtube:?https://www.youtube.com/watch?v=QeWl0h3kQ24

    Detecting People in Artwork with CNNs

    • intro: ECCV 2016 Workshops
    • arxiv:?https://arxiv.org/abs/1610.08871

    Deep Multi-camera People Detection

    • arxiv:?https://arxiv.org/abs/1702.04593

    Person Head Detection

    Context-aware CNNs for person head detection

    • intro: ICCV 2015
    • project page:?http://www.di.ens.fr/willow/research/headdetection/
    • arxiv:?http://arxiv.org/abs/1511.07917
    • github:?https://github.com/aosokin/cnn_head_detection

    Pedestrian Detection

    Pedestrian Detection aided by Deep Learning Semantic Tasks

    • intro: CVPR 2015
    • project page:?http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
    • arxiv:?http://arxiv.org/abs/1412.0069

    Deep Learning Strong Parts for Pedestrian Detection

    • intro: ICCV 2015. CUHK. DeepParts
    • intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset
    • paper:?http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf

    Taking a Deeper Look at Pedestrians

    • intro: CVPR 2015
    • arxiv:?https://arxiv.org/abs/1501.05790

    Convolutional Channel Features

    • intro: ICCV 2015
    • arxiv:?https://arxiv.org/abs/1504.07339
    • github:?https://github.com/byangderek/CCF

    Learning Complexity-Aware Cascades for Deep Pedestrian Detection

    • intro: ICCV 2015
    • arxiv:?https://arxiv.org/abs/1507.05348

    Deep convolutional neural networks for pedestrian detection

    • arxiv:?http://arxiv.org/abs/1510.03608
    • github:?https://github.com/DenisTome/DeepPed

    Scale-aware Fast R-CNN for Pedestrian Detection

    • arxiv:?https://arxiv.org/abs/1510.08160

    New algorithm improves speed and accuracy of pedestrian detection

    • blog:?http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php

    Pushing the Limits of Deep CNNs for Pedestrian Detection

    • intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
    • arxiv:?http://arxiv.org/abs/1603.04525

    A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

    • arxiv:?http://arxiv.org/abs/1607.04436

    A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

    • arxiv:?http://arxiv.org/abs/1607.04441

    Is Faster R-CNN Doing Well for Pedestrian Detection?

    • intro: ECCV 2016
    • arxiv:?http://arxiv.org/abs/1607.07032
    • github:?https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

    Reduced Memory Region Based Deep Convolutional Neural Network Detection

    • intro: IEEE 2016 ICCE-Berlin
    • arxiv:?http://arxiv.org/abs/1609.02500

    Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

    • arxiv:?https://arxiv.org/abs/1610.03466

    Multispectral Deep Neural Networks for Pedestrian Detection

    • intro: BMVC 2016 oral
    • arxiv:?https://arxiv.org/abs/1611.02644

    Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters

    • intro: CVPR 2017
    • project page:?http://ml.cs.tsinghua.edu.cn:5000/publications/synunity/
    • arxiv:?https://arxiv.org/abs/1703.06283
    • github(Tensorflow):?https://github.com/huangshiyu13/RPNplus

    Illuminating Pedestrians via Simultaneous Detection & Segmentation

    [https://arxiv.org/abs/1706.08564](https://arxiv.org/abs/1706.08564

    Rotational Rectification Network for Robust Pedestrian Detection

    • intro: CMU & Volvo Construction
    • arxiv:?https://arxiv.org/abs/1706.08917

    STD-PD: Generating Synthetic Training Data for Pedestrian Detection in Unannotated Videos

    • intro: The University of North Carolina at Chapel Hill
    • arxiv:?https://arxiv.org/abs/1707.09100

    Too Far to See? Not Really! — Pedestrian Detection with Scale-aware Localization Policy

    https://arxiv.org/abs/1709.00235

    Repulsion Loss: Detecting Pedestrians in a Crowd

    https://arxiv.org/abs/1711.07752

    Vehicle Detection

    DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

    • intro: ECCV 2016
    • arxiv:?http://arxiv.org/abs/1607.04564

    Evolving Boxes for fast Vehicle Detection

    • arxiv:?https://arxiv.org/abs/1702.00254

    Fine-Grained Car Detection for Visual Census Estimation

    • intro: AAAI 2016
    • arxiv:?https://arxiv.org/abs/1709.02480

    Traffic-Sign Detection

    Traffic-Sign Detection and Classification in the Wild

    • project page(code+dataset):?http://cg.cs.tsinghua.edu.cn/traffic-sign/
    • paper:?http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
    • code & model:?http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/newdata0411.zip

    Detecting Small Signs from Large Images

    • intro: IEEE Conference on Information Reuse and Integration (IRI) 2017 oral
    • arxiv:?https://arxiv.org/abs/1706.08574

    Boundary / Edge / Contour Detection

    Holistically-Nested Edge Detection

    • intro: ICCV 2015, Marr Prize
    • paper:?http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf
    • arxiv:?http://arxiv.org/abs/1504.06375
    • github:?https://github.com/s9xie/hed

    Unsupervised Learning of Edges

    • intro: CVPR 2016. Facebook AI Research
    • arxiv:?http://arxiv.org/abs/1511.04166
    • zn-blog:?http://www.leiphone.com/news/201607/b1trsg9j6GSMnjOP.html

    Pushing the Boundaries of Boundary Detection using Deep Learning

    • arxiv:?http://arxiv.org/abs/1511.07386

    Convolutional Oriented Boundaries

    • intro: ECCV 2016
    • arxiv:?http://arxiv.org/abs/1608.02755

    Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks

    • project page:?http://www.vision.ee.ethz.ch/~cvlsegmentation/
    • arxiv:?https://arxiv.org/abs/1701.04658
    • github:?https://github.com/kmaninis/COB

    Richer Convolutional Features for Edge Detection

    • intro: CVPR 2017
    • keywords: richer convolutional features (RCF)
    • arxiv:?https://arxiv.org/abs/1612.02103
    • github:?https://github.com/yun-liu/rcf

    Contour Detection from Deep Patch-level Boundary Prediction

    https://arxiv.org/abs/1705.03159

    CASENet: Deep Category-Aware Semantic Edge Detection

    • intro: CVPR 2017. CMU & Mitsubishi Electric Research Laboratories (MERL)
    • arxiv:?https://arxiv.org/abs/1705.09759
    • code:?http://www.merl.com/research/license#CASENet
    • video:?https://www.youtube.com/watch?v=BNE1hAP6Qho

    Skeleton Detection

    Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

    • arxiv:?http://arxiv.org/abs/1603.09446
    • github:?https://github.com/zeakey/DeepSkeleton

    DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

    • arxiv:?http://arxiv.org/abs/1609.03659

    SRN: Side-output Residual Network for Object Symmetry Detection in the Wild

    • intro: CVPR 2017
    • arxiv:?https://arxiv.org/abs/1703.02243
    • github:?https://github.com/KevinKecc/SRN

    Fruit Detection

    Deep Fruit Detection in Orchards

    • arxiv:?https://arxiv.org/abs/1610.03677

    Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

    • intro: The Journal of Field Robotics in May 2016
    • project page:?http://confluence.acfr.usyd.edu.au/display/AGPub/
    • arxiv:?https://arxiv.org/abs/1610.08120

    Shadow Detection

    Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network

    https://arxiv.org/abs/1709.09283

    A+D-Net: Shadow Detection with Adversarial Shadow Attenuation

    https://arxiv.org/abs/1712.01361

    Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal

    https://arxiv.org/abs/1712.02478

    Others Deteciton

    Deep Deformation Network for Object Landmark Localization

    • arxiv:?http://arxiv.org/abs/1605.01014

    Fashion Landmark Detection in the Wild

    • intro: ECCV 2016
    • project page:?http://personal.ie.cuhk.edu.hk/~lz013/projects/FashionLandmarks.html
    • arxiv:?http://arxiv.org/abs/1608.03049
    • github(Caffe):?https://github.com/liuziwei7/fashion-landmarks

    Deep Learning for Fast and Accurate Fashion Item Detection

    • intro: Kuznech Inc.
    • intro: MultiBox and Fast R-CNN
    • paper:?https://kddfashion2016.mybluemix.net/kddfashion_finalSubmissions/Deep%20Learning%20for%20Fast%20and%20Accurate%20Fashion%20Item%20Detection.pdf

    OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)

    • github:?https://github.com/geometalab/OSMDeepOD

    Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

    • intro: IEEE SITIS 2016
    • arxiv:?https://arxiv.org/abs/1611.04357

    Associative Embedding:End-to-End Learning for Joint Detection and Grouping

    • arxiv:?https://arxiv.org/abs/1611.05424

    Deep Cuboid Detection: Beyond 2D Bounding Boxes

    • intro: CMU & Magic Leap
    • arxiv:?https://arxiv.org/abs/1611.10010

    Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

    • arxiv:?https://arxiv.org/abs/1612.03019

    Deep Learning Logo Detection with Data Expansion by Synthesising Context

    • arxiv:?https://arxiv.org/abs/1612.09322

    Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks

    • arxiv:?https://arxiv.org/abs/1702.00307

    Automatic Handgun Detection Alarm in Videos Using Deep Learning

    • arxiv:?https://arxiv.org/abs/1702.05147
    • results:?https://github.com/SihamTabik/Pistol-Detection-in-Videos

    Objects as context for part detection

    https://arxiv.org/abs/1703.09529

    Using Deep Networks for Drone Detection

    • intro: AVSS 2017
    • arxiv:?https://arxiv.org/abs/1706.05726

    Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection

    • intro: ICCV 2017
    • arxiv:?https://arxiv.org/abs/1708.01642

    DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion

    https://arxiv.org/abs/1709.04577

    VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition

    • intro: ICCV 2017
    • arxiv:?https://arxiv.org/abs/1710.06288
    • github:?https://github.com/SeokjuLee/VPGNet

    Grab, Pay and Eat: Semantic Food Detection for Smart Restaurants

    https://arxiv.org/abs/1711.05128

    Object Proposal

    DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

    • arxiv:?http://arxiv.org/abs/1510.04445
    • github:?https://github.com/aghodrati/deepproposal

    Scale-aware Pixel-wise Object Proposal Networks

    • intro: IEEE Transactions on Image Processing
    • arxiv:?http://arxiv.org/abs/1601.04798

    Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

    • intro: BMVC 2016. AttractioNet
    • arxiv:?https://arxiv.org/abs/1606.04446
    • github:?https://github.com/gidariss/AttractioNet

    Learning to Segment Object Proposals via Recursive Neural Networks

    • arxiv:?https://arxiv.org/abs/1612.01057

    Learning Detection with Diverse Proposals

    • intro: CVPR 2017
    • keywords: differentiable Determinantal Point Process (DPP) layer, Learning Detection with Diverse Proposals (LDDP)
    • arxiv:?https://arxiv.org/abs/1704.03533

    ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond

    • keywords: product detection
    • arxiv:?https://arxiv.org/abs/1704.06752

    Improving Small Object Proposals for Company Logo Detection

    • intro: ICMR 2017
    • arxiv:?https://arxiv.org/abs/1704.08881

    Localization

    Beyond Bounding Boxes: Precise Localization of Objects in Images

    • intro: PhD Thesis
    • homepage:?http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
    • phd-thesis:?http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
    • github(“SDS using hypercolumns”):?https://github.com/bharath272/sds

    Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

    • arxiv:?http://arxiv.org/abs/1503.00949

    Weakly Supervised Object Localization Using Size Estimates

    • arxiv:?http://arxiv.org/abs/1608.04314

    Active Object Localization with Deep Reinforcement Learning

    • intro: ICCV 2015
    • keywords: Markov Decision Process
    • arxiv:?https://arxiv.org/abs/1511.06015

    Localizing objects using referring expressions

    • intro: ECCV 2016
    • keywords: LSTM, multiple instance learning (MIL)
    • paper:?http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
    • github:?https://github.com/varun-nagaraja/referring-expressions

    LocNet: Improving Localization Accuracy for Object Detection

    • intro: CVPR 2016 oral
    • arxiv:?http://arxiv.org/abs/1511.07763
    • github:?https://github.com/gidariss/LocNet

    Learning Deep Features for Discriminative Localization

    • homepage:?http://cnnlocalization.csail.mit.edu/
    • arxiv:?http://arxiv.org/abs/1512.04150
    • github(Tensorflow):?https://github.com/jazzsaxmafia/Weakly_detector
    • github:?https://github.com/metalbubble/CAM
    • github:?https://github.com/tdeboissiere/VGG16CAM-keras

    ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

    • intro: ECCV 2016
    • project page:?http://www.di.ens.fr/willow/research/contextlocnet/
    • arxiv:?http://arxiv.org/abs/1609.04331
    • github:?https://github.com/vadimkantorov/contextlocnet

    Ensemble of Part Detectors for Simultaneous Classification and Localization

    https://arxiv.org/abs/1705.10034

    STNet: Selective Tuning of Convolutional Networks for Object Localization

    https://arxiv.org/abs/1708.06418

    Soft Proposal Networks for Weakly Supervised Object Localization

    • intro: ICCV 2017
    • arxiv:?https://arxiv.org/abs/1709.01829

    Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN

    • intro: ACM MM 2017
    • arxiv:?https://arxiv.org/abs/1709.08295

    Tutorials / Talks

    Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

    • slides:?http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

    Towards Good Practices for Recognition & Detection

    • intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
    • slides:?http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf

    Projects

    TensorBox: a simple framework for training neural networks to detect objects in images

    • intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the?ReInspect?algorithm”
    • github:?https://github.com/Russell91/TensorBox

    Object detection in torch: Implementation of some object detection frameworks in torch

    • github:?https://github.com/fmassa/object-detection.torch

    Using DIGITS to train an Object Detection network

    • github:?https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

    FCN-MultiBox Detector

    • intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
    • github:?https://github.com/teaonly/FMD.torch

    KittiBox: A car detection model implemented in Tensorflow.

    • keywords: MultiNet
    • intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
    • github:?https://github.com/MarvinTeichmann/KittiBox

    Deformable Convolutional Networks + MST + Soft-NMS

    • github:?https://github.com/bharatsingh430/Deformable-ConvNets

    Leaderboard

    Detection Results: VOC2012

    • intro: Competition “comp4” (train on additional data)
    • homepage:?http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

    Tools

    BeaverDam: Video annotation tool for deep learning training labels

    https://github.com/antingshen/BeaverDam

    Blogs

    Convolutional Neural Networks for Object Detection

    http://rnd.azoft.com/convolutional-neural-networks-object-detection/

    Introducing automatic object detection to visual search (Pinterest)

    • keywords: Faster R-CNN
    • blog:?https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
    • demo:?https://engineering.pinterest.com/sites/engineering/files/Visual%20Search%20V1%20-%20Video.mp4
    • review:?https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

    Deep Learning for Object Detection with DIGITS

    • blog:?https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

    Analyzing The Papers Behind Facebook’s Computer Vision Approach

    • keywords: DeepMask, SharpMask, MultiPathNet
    • blog:?http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

    How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

    • blog:?https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
    • github:?https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

    Object Detection in Satellite Imagery, a Low Overhead Approach

    • part 1:?https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
    • part 2:?https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

    You Only Look Twice?—?Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

    • part 1:?https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
    • part 2:?https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

    Faster R-CNN Pedestrian and Car Detection

    • blog:?https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
    • ipn:?https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
    • github:?https://github.com/bigsnarfdude/Faster-RCNN_TF

    Small U-Net for vehicle detection

    • blog:?https://medium.com/@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6#.md4u80kad

    Region of interest pooling explained

    • blog:?https://deepsense.io/region-of-interest-pooling-explained/
    • github:?https://github.com/deepsense-io/roi-pooling

    Supercharge your Computer Vision models with the Tensor

    總結

    以上是生活随笔為你收集整理的object detection的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 久久3p | 欧洲亚洲视频 | 欧美视频在线免费 | 国产精品久久久久久人妻精品动漫 | 色狠狠综合网 | 亚洲欧美日韩精品永久在线 | 色综合天天色 | 国产亚洲一区二区三区不卡 | www.xxxxx日本 | 古装做爰无遮挡三级 | 久草网在线视频 | 日韩视频区 | 国产88av | 性高潮久久久久久 | 久久福利影视 | www.99av | av超碰| 欧美日本不卡 | 免费久草视频 | 欧美一区二区三区影院 | 三级国产在线 | 国产综合精品久久久久成人影 | av黄| 尤物在线视频 | 日韩精品片 | 亚洲人女屁股眼交6 | 久久尹人 | 一级淫片免费看 | 九九色网 | 日韩av色图 | 理论黄色片| 黄色网在线免费观看 | 欧美一区二区二区 | 日韩av网站在线 | 在线观看av网 | 亚洲天堂男人网 | 人人看人人干 | 美日韩一区 | av一级黄色 | 人妻在线日韩免费视频 | 毛片免费一区二区三区 | 久久调教视频 | 欧美图片一区二区三区 | 亚洲xx网站| 国产黑丝在线观看 | 久久久麻豆 | www免费黄色 | 91丨porny丨九色| 午夜激情电影院 | 国产精品一区二区亚洲 | 国产成人精品一区二区三区无码熬 | 九九爱精品 | 在线日韩三级 | 不卡免费av | xxxx国产精品 | 日批视频免费看 | 久精品国产 | 亚洲另类天堂 | 亚洲一区免费观看 | 国产好片无限资源 | 色婷婷色综合 | 中文字幕欧美一区 | 黄色av一级片 | 中国黄色录像一级片 | 日韩三级在线免费观看 | 色骚网| 中文字幕三级视频 | 久久午夜伦理 | 高潮一区二区三区 | 亚洲顶级毛片 | 欧美中文字幕在线观看 | 爱草在线视频 | 欧美日韩免费在线观看 | 91精品啪在线观看国产线免费 | 很黄很黄的网站 | 熟女毛毛多熟妇人妻aⅴ在线毛片 | 日韩成人av片 | 国产精品视频一区在线观看 | 久久老司机精品视频 | 中文字幕一区二区人妻痴汉电车 | 在线播放视频高清在线观看 | xxxxⅹxxxhd日本8hd | 午夜资源 | 少妇2做爰交换朴银狐 | 久久91精品国产 | 欧美一区二区三区大屁股撅起来 | 超碰人人干 | 亚州av网站 | 亚洲第一色网站 | 中国黄色一级毛片 | 丰满熟妇人妻av无码区 | 亚洲做受高潮无遮挡 | 亚洲国产成人一区二区 | 巨乳中文字幕 | 美女被揉胸视频 | 在线看一区二区 | 国产国语videosex另类 | 撸啊撸av | av手机在线免费观看 |