日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【图像分类】 图像分类中的对抗攻击是怎么回事?

發布時間:2025/3/20 编程问答 24 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【图像分类】 图像分类中的对抗攻击是怎么回事? 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

歡迎大家來到圖像分類專欄,深度學習分類模型雖然性能強大,但是也常常會因為受到小的干擾而性能崩潰,對抗攻擊就是專門研究如何提高網絡模型魯棒性的方法,本文簡要介紹相關內容。

作者&編輯 | 郭冰洋

1 簡介

對于人類而言,僅僅通過所接收到的視覺信息并不能完全幫助我們做出正確、迅速的判定,還需要結合我們的生活經驗做出相應的反應,以確定哪些信息是真實可靠的,而哪些信息是虛假偽造的,從而選取最適合的信息并做出最終的決策。

基于深度學習的圖像分類網絡,大多是在精心制作的數據集下進行訓練,并完成相應的部署,對于數據集之外的圖像或稍加改造的圖像,網絡的識別能力往往會受到一定的影響,比如下圖中的雪山和河豚,在添加完相應的噪聲之后被模型識別為了狗和螃蟹。

在此現象之下,對抗攻擊(Adversarial Attack)開始加入到網絡模型魯棒性的考查之中。通過添加不同的噪聲或對圖像的某些區域進行一定的改造生成對抗樣本,以此樣本對網絡模型進行攻擊以達到混淆網絡的目的,即對抗攻擊。而添加的這些干擾信息,在人眼看來是沒有任何區別的,但是對于網絡模型而言,某些數值的變化便會引起“牽一發而動全身”的影響。這在實際應用中將是非常重大的判定失誤,如果發生在安檢、安防等領域,將會出現不可估量的問題。

本篇文章我們就來談談對抗攻擊對圖像分類網絡的影響,了解其攻擊方式和現有的解決措施。

2 對抗攻擊方式

2.1 白盒攻擊(White-box Attacks)

攻擊者已知模型內部的所有信息和參數,基于給定模型的梯度生成對抗樣本,對網絡進行攻擊。

2.2?黑盒攻擊(Black-box Attacks)

當攻擊者無法訪問模型詳細信息時,白盒攻擊顯然不適用,黑盒攻擊即不了解模型的參數和結構信息,僅通過模型的輸入和輸出,生成對抗樣本,再對網絡進行攻擊。

現實生活中相應系統的保密程度還是很可靠的,模型的信息完全泄露的情況也很少,因此白盒攻擊的情況要遠遠少于黑盒攻擊。但二者的思想均是一致的,通過梯度信息以生成對抗樣本,從而達到欺騙網絡模型的目的。

3 解決方案

3.1 ALP

Adversarial Logit Paring (ALP)[1]是一種對抗性訓練方法,通過對一個干凈圖像的網絡和它的對抗樣本進行類似的預測,其思想可以解釋為使用清潔圖像的預測結果作為“無噪聲”參考,使對抗樣本學習清潔圖像的特征,以達到去噪的目的。該方法在ImageNet數據集上對白盒攻擊和黑盒攻擊分別取得了 55.4%和77.3%的準確率。

3.2 Pixel Denoising

Pixel Denosing是以圖像去噪的思想避免對抗攻擊的干擾,其中代表性的是Liao等[2]提出的在網絡高級別的特征圖上設置一個去噪模塊,以促進淺層網絡部分更好的學習“干凈”的特征。

3.3 Non-differentiable Transform

無論是白盒攻擊還是黑盒攻擊,其核心思想是對網絡的梯度和參數進行估計,以完成對抗樣本的生成。Guo等[3]提出采用更加多樣化的不可微圖像變換操作(Non-differentiable Transform)以增加網絡梯度預測的難度,通過拼接、方差最小化等操作以達到防御的目的。

3.4 Feature Level

通過觀察網絡特征圖來監測干擾信息的影響,是Xie等[4]提出的一種全新思路,即對比清潔圖像和對抗樣本的特征圖變化(如上圖所示),從而設計一種更加有效直觀的去噪模塊,以增強網絡模型的魯棒性,同樣取得了非常有效的結果。

除此之外,諸多研究人員針對梯度下降算法提出了混淆梯度(Obfuscated gradients)的防御機制,在網絡參數更新的梯度優化階段采用離散梯度、隨機梯度與梯度爆炸等方法,實現更好的防御措施。

參考文獻:

1 H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit

pairing. In NIPS, 2018.

2 F. Liao, M. Liang, Y. Dong, and T. Pang. Defense against

adversarial attacks using high-level representation guided

denoiser. In CVPR, 2018

3 C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Countering

adversarial images using input transformations. In ICLR,

2018.

4 Cihang Xie,Yuxin Wu,Laurens van der Maaten,Alan Yuille and Kaiming He. Feature Denoising for Improving Adversarial Robustness.In CVPR 2019

總結

對抗攻擊是圖像分類網絡模型面臨的一大挑戰,日后也將是識別、分割模型的一大干擾,有效地解決對抗樣本的影響,增加網絡模型的魯棒性和安全性,也是我們需要進一步研究的內容。

轉載文章請后臺聯系

侵權必究

往期精選

總結

以上是生活随笔為你收集整理的【图像分类】 图像分类中的对抗攻击是怎么回事?的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 寡妇高潮一级视频免费看 | 中文在线一区二区 | 女生和男生一起插插插 | 高清一区二区在线 | 看片网址国产福利av中文字幕 | 日韩中文字幕在线观看视频 | 国产精品无码免费在线观看 | 三级特黄视频 | 91视频一区二区 | 丁香六月五月婷婷 | 日日夜夜一区二区 | 成人在线观看黄色 | 禁漫天堂黄漫画无遮挡观看 | 亚洲综合伊人久久 | 一区二区欧美在线 | 久久综合综合久久 | 亚洲无限av| 日韩中文一区二区三区 | 永久免费网站直接看 | 欧美一区亚洲一区 | 天天色天天干天天 | 中文字幕亚洲一区二区三区 | 国产成年人网站 | 无套白嫩进入乌克兰美女 | 亚洲天堂资源网 | 亚洲爱情岛论坛永久 | 日韩高清免费观看 | 天天操天天摸天天干 | 驯服少爷漫画免费观看下拉式漫画 | 午夜看片在线 | 国产乱码77777777 | 97看片网| 亚洲少妇网| 免费看三级黄色片 | 亚洲精品av中文字幕在线在线 | 天天摸天天操天天干 | 韩国女主播一区 | 欧美乱妇狂野欧美视频 | 国产一级片av | 黄色一级片 | 国产影音先锋 | 潘金莲三级80分钟 | 国产污污视频在线观看 | 国产又粗又硬又黄的视频 | 日韩成人免费视频 | 国产精品嫩草69影院 | 日日干日日爽 | 色婷婷久久综合中文久久蜜桃av | 成人在线免费观看网址 | 日本aa视频| 97人人模人人爽人人少妇 | 老头巨大又粗又长xxxxx | 日韩大片免费观看视频播放 | 久久av一区二区三区亚洲 | 青青草原亚洲视频 | 亚洲一区免费 | 日韩资源站 | 免费一区二区视频 | 深夜福利电影 | 免费av看片| 国产人妻精品午夜福利免费 | 亚洲av综合色区无码一二三区 | 色呦呦网站在线观看 | 亚洲欲色 | 中文字幕网站 | 一区二区三区久久 | 亚洲av无码精品一区二区 | 青青伊人av | 日韩高清精品免费观看 | 国产你懂得 | 亚洲高清视频在线观看 | 中文字幕在线视频观看 | 亚洲精品一区二区三区四区乱码 | 成av人片在线观看www | 香蕉久久av一区二区三区 | 日本一区二区三区在线视频 | 色美av| a毛片在线免费观看 | 午夜精品久久久久久久99老熟妇 | 久久免费公开视频 | 伦理av在线| 91一二区 | www.色呦呦 | 国产99久久久国产精品 | 色综合天天综合网天天看片 | 亚洲激情婷婷 | 日批视频在线 | 国产精品 欧美精品 | 一区二区网站 | 在线激情网 | 四虎网站在线观看 | 青青草伊人 | 婷婷综合另类小说色区 | 被扒开腿一边憋尿一边惩罚 | 91成人在线观看喷潮动漫 | 成人在线观看免费网站 | 国产香蕉久久 | 青青草原免费观看 | 日日碰狠狠添天天爽无码 |