日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

机器学习的前期入门汇总

發(fā)布時間:2025/3/20 编程问答 20 豆豆
生活随笔 收集整理的這篇文章主要介紹了 机器学习的前期入门汇总 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

機器學習機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統(tǒng)計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓計算機可以自動“學習”的算法。機器學習算法是一類從數(shù)據(jù)中自動分析獲得規(guī)律,并利用規(guī)律對未知數(shù)據(jù)進行預測的算法。因為學習算法中涉及了大量的統(tǒng)計學理論,機器學習與統(tǒng)計推斷學聯(lián)系尤為密切,也被稱為統(tǒng)計學習理論。算法設計方面,機器學習理論關注可以實現(xiàn)的,行之有效的學習算法。


大致分三類: 起步體悟,實戰(zhàn)筆記,行家導讀

  • 機器學習入門者學習指南 @果殼網(wǎng) (2013) 作者 白馬 -- [起步體悟] 研究生型入門者的親身經(jīng)歷

  • 有沒有做機器學習的哥們?能否介紹一下是如何起步的 @ourcoders-- [起步體悟] 研究生型入門者的親身經(jīng)歷,尤其要看reyoung的建議

  • tornadomeet 機器學習筆記 (2013) -- [實戰(zhàn)筆記] 學霸的學習筆記,看看小伙伴是怎樣一步一步地掌握“機器學習”

  • Machine Learning Roadmap: Your Self-Study Guide to Machine Learning (2014) Jason Brownlee -- [行家導讀] 雖然是英文版,但非常容易讀懂。對Beginner,Novice,Intermediate,Advanced讀者都有覆蓋。

  • A Tour of Machine Learning Algorithms (2013) 這篇關于機器學習算法分類的文章也非常好

  • Best Machine Learning Resources for Getting Started(2013) 這片有中文翻譯 機器學習的最佳入門學習資源

  • 門主的幾個建議

    + 既要有數(shù)學基礎,也要編程實踐+ 別怕英文版,你不懂的大多是專業(yè)名詞,將來不論寫文章還是讀文檔都是英文為主 復制代碼

機器學習入門資源不完全匯總更多攻略

  • 機器學習該怎么入門 @知乎 (2014)

  • What's the easiest way to learn machine learning @quora(2013)

  • What is the best way to study machine learning @quora(2012)

  • Is there any roadmap for learning Machine Learning (ML) and its related courses at CMU Is there any roadmap for learning Machine Learning (ML) and its related courses at CMU(2014)


機器學習入門資源不完全匯總課程資源

Tom Mitchell 和 Andrew Ng 的課都很適合入門

機器學習入門資源不完全匯總入門課程機器學習入門資源不完全匯總2011Tom Mitchell(CMU)機器學習


英文原版視頻與課件PDF他的《機器學習》在很多課程上被選做教材,有中文版。

  • Decision Trees

  • Probability and Estimation

  • Naive Bayes

  • Logistic Regression

  • Linear Regression

  • Practical Issues: Feature selection,Overfitting ...

  • Graphical models: Bayes networks, EM,Mixture of Gaussians clustering ...

  • Computational Learning Theory: PAC Learning, Mistake bounds ...

  • Semi-Supervised Learning

  • Hidden Markov Models

  • Neural Networks

  • Learning Representations: PCA, Deep belief networks, ICA, CCA ...

  • Kernel Methods and SVM

  • Active Learning

  • Reinforcement Learning 以上為課程標題節(jié)選


機器學習與數(shù)據(jù)挖掘的區(qū)別

  • 機器學習關注從訓練數(shù)據(jù)中學到已知屬性進行預測

  • 數(shù)據(jù)挖掘側重從數(shù)據(jù)中發(fā)現(xiàn)未知屬性


Dan Levin, What is the differencebetween statistics, machine learning, AI and data mining?

  • If there are up to 3 variables, it is statistics.

  • If the problem is NP-complete, it is machine learning.

  • If the problem is PSPACE-complete, it is AI.

  • If you don't know what is PSPACE-complete, it is data mining.


幾篇高屋建瓴的機器學習領域概論, 參見原文

  • The Discipline of Machine LearningTom Mitchell 當年為在CMU建立機器學習系給校長寫的東西。

  • A Few Useful Things to Know about Machine Learning Pedro Domingos教授的大道理,也許入門時很多概念還不明白,上完公開課后一定要再讀一遍。

幾本好書

  • 李航博士的《統(tǒng)計學習方法》。
  • 數(shù)學基礎
  • 機器學習必要的數(shù)學基礎主要包括:多元微積分,線性代數(shù)

  • Calculus: Single Variable | Calculus One (可選)

  • Multivariable Calculus

  • Linear Algebra

  • 統(tǒng)計基礎

  • Introduction to Statistics: Descriptive Statistics

  • Probabilistic Systems Analysis and Applied Probability | 概率 ( 可選)

  • Introduction to Statistics: Inference

  • 編程基礎

  • Programming for Everybody (Python)

  • DataCamp: Learn R with R tutorials and coding challenges(R)

  • Introduction to Computer Science:Build a Search Engine & a Social Network

  • 機器學習

  • Statistical Learning(R)

  • Machine Learning

  • 機器學習基石

  • 機器學習技法


  • 下面是近期的給外行人讀的泛數(shù)學科普書籍,由淺至深,作用除了感受數(shù)學之美之外,更重要的是可以作用每天學習的雞血,因為這些書都比較好讀……

    1.《數(shù)學之美》作者:吳軍 2.《 Mathematician's Lament | 數(shù)學家的嘆息》作者:by Paul Lockhart 3.《 Think Stats: Probability and Statistics forProgrammers | 統(tǒng)計思維:程序員數(shù)學之概率統(tǒng)計 》 作者:Allen B. Downey 4.《 A History of Mathematics | 數(shù)學史 》作者:Carl B. Boyer 5.《 Journeys Through Genius | 天才引導的歷程:數(shù)學中的偉大定理 》作者:William Dunham 6.《 The Mathematical Experience | 數(shù)學經(jīng)驗 》作者 Philip J.Davis、Reuben Hersh 7.《 Proofs from the Book | 數(shù)學天書中的證明 》作者:Martin Aigner、Günter M. Ziegler 8.《 Proofs and Refutations | 證明與反駁-數(shù)學發(fā)現(xiàn)的邏輯 》作者:Imre Lakatos


  • Python/C++/R/Java - you will probably want to learnall of these languages at some point if you want a job in machine-learning.Python's Numpy and Scipy libraries [2] are awesome because they have similarfunctionality to MATLAB, but can be easily integrated into a web service andalso used in Hadoop (see below). C++ will be needed to speed code up. R [3] isgreat for statistics and plots, and Hadoop [4] is written in Java, so you mayneed to implement mappers and reducers in Java (although you could use ascripting language via Hadoop streaming [5])

  • 首先,你要熟悉這四種語言。Python因為開源的庫比較多,可以看看Numpy和Scipy這兩個庫,這兩個都可以很好的融入網(wǎng)站開發(fā)以及Hadoop。C++可以讓你的代碼跑的更快,R則是一個很好地統(tǒng)計工具。而你想很好地使用Hadoop你也必須懂得java,以及如何實現(xiàn)map reduce


  • Probability and Statistics: A good portion oflearning algorithms are based on this theory. Naive Bayes [6], Gaussian MixtureModels [7], Hidden Markov Models [8], to name a few. You need to have a firmunderstanding of Probability and Stats to understand these models. Go nuts andstudy measure theory [9]. Use statistics as an model evaluation metric:confusion matrices, receiver-operator curves, p-values, etc.

  • 我推薦統(tǒng)計學習方法 李航寫的,這算的上我mentor的mentor了。理解一些概率的理論,比如貝葉斯,SVM,CRF,HMM,決策樹,AdaBoost,邏輯斯蒂回歸,然后再稍微看看怎么做evaluation 比如P R F。也可以再看看假設檢驗的一些東西。


  • Applied Math + Algorithms: For discriminatemodels like SVMs [10], you need to have a firm understanding of algorithmtheory. Even though you will probably never need to implement an SVM fromscratch, it helps to understand how the algorithm works. You will need tounderstand subjects like convex optimization [11], gradient decent [12],quadratic programming [13], lagrange [14], partial differential equations [15],etc. Get used to looking at summations [16].

  • 機器學習畢竟是需要極強極強數(shù)學基礎的。我希望開始可以深入的了解一些算法的本質(zhì),SVM是個很好的下手點。可以從此入手,看看拉格朗日,凸優(yōu)化都是些什么


  • Distributed Computing: Most machine learningjobs require working with large data sets these days (see Data Science) [17].You cannot process this data on a single machine, you will have to distributeit across an entire cluster. Projects like Apache Hadoop [4] and cloud serviceslike Amazon's EC2 [18] makes this very easy and cost-effective. Although Hadoopabstracts away a lot of the hard-core, distributed computing problems, youstill need to have a firm understanding of map-reduce [22], distribute-filesystems [19], etc. You will most likely want to check out Apache Mahout [20]and Apache Whirr [21].

  • 熟悉分布計算,機器學習當今必須是多臺機器跑大數(shù)據(jù),要不然沒啥意義。請熟悉Hadoop,這對找工作有很大很大的意義。百度等公司都需要hadoop基礎。


  • Expertise in Unix Tools: Unless you are veryfortunate, you are going to need to modify the format of your data sets so theycan be loaded into R,Hadoop,HBase [23],etc. You can use a scripting languagelike python (using re) to do this but the best approach is probably just masterall of the awesome unix tools that were designed for this: cat [24], grep [25],find [26], awk [27], sed [28], sort [29], cut [30], tr [31], and many more.Since all of the processing will most likely be on linux-based machine (Hadoopdoesnt run on Window I believe), you will have access to these tools. Youshould learn to love them and use them as much as possible. They certainly havemade my life a lot easier. A great example can be found here [1].

  • 熟悉Unix的Tool以及命令。百度等公司都是依靠Linux工作的,可能現(xiàn)在依靠Windows的Service公司已經(jīng)比較少了。所以怎么也要熟悉Unix操作系統(tǒng)的這些指令吧。我記得有個百度的面試題就是問文件復制的事情。


  • Become familiar with the Hadoop sub-projects:HBase, Zookeeper [32], Hive [33], Mahout, etc. These projects can help youstore/access your data, and they scale.

  • 機器學習終究和大數(shù)據(jù)息息相關,所以Hadoop的子項目要關注,比如HBase Zookeeper Hive等等


  • Learn about advanced signal processing techniques:feature extraction is one of the most important parts of machine-learning. Ifyour features suck, no matter which algorithm you choose, your going to seehorrible performance. Depending on the type of problem you are trying to solve,you may be able to utilize really cool advance signal processing algorithmslike: wavelets [42], shearlets [43], curvelets [44], contourlets [45], bandlets[46]. Learn about time-frequency analysis [47], and try to apply it to yourproblems. If you have not read about Fourier Analysis[48] and Convolution[49],you will need to learn about this stuff too. The ladder is signal processing101 stuff though.

  • 這里主要是在講特征的提取問題。無論是分類(classification)還是回歸(regression)問題,都要解決特征選擇和抽取(extraction)的問題。他給出了一些基礎的特征抽取的工具如小波等,同時說需要掌握傅里葉分析和卷積等等。這部分我不大了解,大概就是說信號處理你要懂,比如傅里葉這些。。。


    Finally, practice and read as much as you can. In yourfree time, read papers like Google Map-Reduce [34], Google File System [35],Google Big Table [36], The Unreasonable Effectiveness of Data [37],etc Thereare great free machine learning books online and you should read those also.[38][39][40]. Here is an awesome course I found and re-posted on github [41].Instead of using open source packages, code up your own, and compare theresults. If you can code an SVM from scratch, you will understand the conceptof support vectors, gamma, cost, hyperplanes, etc. It's easy to just load somedata up and start training, the hard part is making sense of it all.


    總之機器學習如果想要入門分為兩方面: 一方面是去看算法,需要極強的數(shù)理基礎(真的是極強的),從SVM入手,一點點理解。 另一方面是學工具,比如分布式的一些工具以及Unix。


    閱讀原文

    總結

    以上是生活随笔為你收集整理的机器学习的前期入门汇总的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 一区二区三区四区在线视频 | 国产美女特级嫩嫩嫩bbb | 国产三区av | 久久中文字幕无码 | 吃奶av | 日本四级电影 | 91亚洲精品久久久蜜桃 | 日本亚洲一区二区三区 | 日本xxxx免费 | 91丨porny丨海角社区 | 日韩一级二级视频 | 优优色影院 | 日韩一级视频 | 亚洲精品久久久 | 色人阁视频 | 国产成人亚洲精品无码h在线 | 色视频导航 | 黄色片子免费看 | 国产福利二区 | 四川话毛片少妇免费看 | 国产亚洲精品网站 | 久久成人久久 | 成人深夜小视频 | 国产又黄又粗 | 自拍偷拍福利视频 | 欧美在线性视频 | 亚洲午夜不卡 | 国内视频一区二区 | 思思久久久 | 国产精品入口66mio男同 | 欧美日韩一区在线观看 | 国产精品-区区久久久狼 | a猛片免费播放 | 日本黄色小视频 | 亚洲va在线 | 免费看污黄网站在线观看 | 超碰成人免费 | 中文字幕99| 国产精品一区二区三区在线播放 | 懂色一区二区三区 | 国产一级特黄毛片 | 亚洲av区无码字幕中文色 | 免费看黄色片子 | 亚洲天堂成人av | 日韩欧美国产高清91 | 国产免费脚交足视频在线观看 | 超碰人人做 | 久久久999 | 狠狠久久| 欧美色综合网站 | 精品99在线 | 久久无码视频网站 | 亚洲国产精品成人无码区 | 国产精品白嫩白嫩大学美女 | 黄色资源在线观看 | 91theporn国产在线观看 | 91视频色| 午夜激情福利 | 蜜美杏av | 国产精品无码久久久久久 | av在线不卡一区 | 欧美激情999 | 光棍福利视频 | 99成人免费视频 | 久久国产亚洲精品无码 | 亚洲人成人网 | 欧美性狂猛xxxxxbbbbb | 亚洲av无码一区二区三区在线观看 | 99久久精品国产一区色 | 欧美精品色图 | 国产成人无码精品久在线观看 | 在线播放成人av | 一区二区在线国产 | 久久免费看片 | 亚洲av成人无码一区二区三区在线观看 | 亚洲色图国产视频 | 国产成人在线看 | 亚洲国产日韩av | 精品少妇人妻av免费久久洗澡 | av大片免费观看 | 成人黄色av| 日韩在线不卡一区 | 久久久成人精品一区二区三区 | 97精品一区二区三区 | 色综合狠狠爱 | 少妇喷水在线观看 | 精品日韩中文字幕 | 好爽快一点高潮了 | 另类小说亚洲色图 | 九九热这里有精品视频 | 亚洲国产专区 | 免看黄大片aa| 欧美影音| jizz亚洲女人高潮大叫 | 欧美一级黄色片视频 | 国产乱码精品一区二区三区五月婷 | 99热这里只有精品首页 | 天堂在线中文字幕 | 日韩在线视频在线观看 |