tensolrflow之基础变量
生活随笔
收集整理的這篇文章主要介紹了
tensolrflow之基础变量
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
#優化一個乘法算子
?
#coding:utf-8 __author__ = 'similarface' import tensorflow as tf sess=tf.Session() #創建一個常量張量 a=tf.Variable(tf.constant(4.)) x_val=5. x_data=tf.placeholder(dtype=tf.float32)#添加計算圖 multiplication=tf.multiply(a,x_data) #我們將聲明損失函數為輸出與期望目標值100之間的L2距離: loss = tf.square(tf.subtract(multiplication, 100.))#初始化模型變量 現在我們并將我們的優化算法聲明為標準梯度下降: init = tf.initialize_all_variables() sess.run(init) #標準梯度下降 my_opt = tf.train.GradientDescentOptimizer(0.01) train_step = my_opt.minimize(loss)print('優化乘法輸出100.') for i in range(10):sess.run(train_step, feed_dict={x_data: x_val})a_val = sess.run(a)mult_output = sess.run(multiplication, feed_dict={x_data: x_val})print(str(a_val) + ' * ' + str(x_val) + ' = ' + str(mult_output))?
?
__author__ = 'similarface' from tensorflow.python.framework import ops import tensorflow as tf ''' y=a*x+b ''' ops.reset_default_graph() sess = tf.Session() a = tf.Variable(tf.constant(1.)) b = tf.Variable(tf.constant(1.)) x_val = 5. x_data = tf.placeholder(dtype=tf.float32) two_gate = tf.add(tf.multiply(a, x_data), b) loss = tf.square(tf.subtract(two_gate, 50.)) my_opt = tf.train.GradientDescentOptimizer(0.01) train_step = my_opt.minimize(loss) init = tf.initialize_all_variables() sess.run(init) print('\nOptimizing Two Gate Output to 50.') for i in range(10):a_val, b_val = (sess.run(a), sess.run(b))# Run the train stepsess.run(train_step, feed_dict={x_data: x_val})# Get the a and b valuesa_val, b_val = (sess.run(a), sess.run(b))# Run the two-gate graph outputtwo_gate_output = sess.run(two_gate, feed_dict={x_data: x_val})print(str(a_val) + ' * ' + str(x_val) + ' + ' + str(b_val) + '= ' + str(two_gate_output))'''
result:
10.4 * 5.0 + 2.88= 54.88
14.912 * 5.0 + 3.7824= 78.3424
17.0778 * 5.0 + 4.21555= 89.6043
18.1173 * 5.0 + 4.42347= 95.0101
18.6163 * 5.0 + 4.52326= 97.6048
18.8558 * 5.0 + 4.57117= 98.8503
18.9708 * 5.0 + 4.59416= 99.4482
19.026 * 5.0 + 4.6052= 99.7351
19.0525 * 5.0 + 4.61049= 99.8729
19.0652 * 5.0 + 4.61304= 99.939
?
轉載于:https://www.cnblogs.com/similarface/p/8579537.html
總結
以上是生活随笔為你收集整理的tensolrflow之基础变量的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 人工智能等新技术将加速物联网的普及
- 下一篇: 【工具使用系列】关于 MATLAB 液压