日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

python numba.jit 警告:cannot determine Numba type of class 'numba.dispatcher.LiftedLoop'(加速代码)

發布時間:2025/3/20 python 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python numba.jit 警告:cannot determine Numba type of class 'numba.dispatcher.LiftedLoop'(加速代码) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

原代碼

# -*- coding: utf-8 -*- """ @File : 191218_obstacle_detection_測試加空間過濾器和jit加速器.py @Time : 2019/12/18 11:47 @Author : Dontla @Email : sxana@qq.com @Software: PyCharm """import timeimport numpy as np import pyrealsense2 as rs import cv2 import sys from numba import jit, vectorize, int64, int32, autojit, uint16, float64class ObstacleDetection(object):def __init__(self):# self.cam_serials = ['838212073161', '827312071726']self.cam_serials = ['838212073161']# @jit(nopython=True)@jit# @vectorize([int64(int64, int64)], target='parallel')# @jit('int64(int64,int64[:])')# @jit(int64[:](int64[:], int64[:]))def traversing_pixels(self, depth_image):num_black = 0all_pixels = 0for pixel in depth_image.ravel():all_pixels += 1if pixel == 0:num_black += 1return num_black# return all_pixels, num_blackdef obstacle_detection(self):# 攝像頭個數(在這里設置所需使用攝像頭的總個數)cam_num = 6ctx = rs.context()'''連續驗證機制'''# D·C 1911202:創建最大驗證次數max_veri_times;創建連續穩定值continuous_stable_value,用于判斷設備重置后是否處于穩定狀態max_veri_times = 100continuous_stable_value = 10print('\n', end='')print('開始連續驗證,連續驗證穩定值:{},最大驗證次數:{}:'.format(continuous_stable_value, max_veri_times))continuous_value = 0veri_times = 0while True:devices = ctx.query_devices()connected_cam_num = len(devices)if connected_cam_num == cam_num:continuous_value += 1if continuous_value == continuous_stable_value:breakelse:continuous_value = 0veri_times += 1if veri_times == max_veri_times:print("檢測超時,請檢查攝像頭連接!")sys.exit()print('攝像頭個數:{}'.format(connected_cam_num))'''循環reset攝像頭'''# hardware_reset()后是不是應該延遲一段時間?不延遲就會報錯print('\n', end='')print('開始初始化攝像頭:')for dev in ctx.query_devices():# 先將設備的序列號放進一個變量里,免得在下面for循環里訪問設備的信息過多(雖然不知道它會不會每次都重新訪問)dev_serial = dev.get_info(rs.camera_info.serial_number)# 匹配序列號,重置我們需重置的特定攝像頭(注意兩個for循環順序,哪個在外哪個在內很重要,不然會導致剛重置的攝像頭又被訪問導致報錯)for serial in self.cam_serials:if serial == dev_serial:dev.hardware_reset()# 像下面這條語句居然不會報錯,不是剛剛才重置了dev嗎?莫非區別在于沒有通過for循環ctx.query_devices()去訪問?# 是不是剛重置后可以通過ctx.query_devices()去查看有這個設備,但是卻沒有存儲設備地址?如果是這樣,# 也就能夠解釋為啥能夠通過len(ctx.query_devices())函數獲取設備數量,但訪問序列號等信息就會報錯的原因了print('攝像頭{}初始化成功'.format(dev.get_info(rs.camera_info.serial_number)))'''連續驗證機制'''# D·C 1911202:創建最大驗證次數max_veri_times;創建連續穩定值continuous_stable_value,用于判斷設備重置后是否處于穩定狀態print('\n', end='')print('開始連續驗證,連續驗證穩定值:{},最大驗證次數:{}:'.format(continuous_stable_value, max_veri_times))continuous_value = 0veri_times = 0while True:devices = ctx.query_devices()connected_cam_num = len(devices)if connected_cam_num == cam_num:continuous_value += 1if continuous_value == continuous_stable_value:breakelse:continuous_value = 0veri_times += 1if veri_times == max_veri_times:print("檢測超時,請檢查攝像頭連接!")sys.exit()print('攝像頭個數:{}'.format(connected_cam_num))'''配置各個攝像頭的基本對象'''for i in range(len(self.cam_serials)):locals()['pipeline' + str(i + 1)] = rs.pipeline(ctx)locals()['config' + str(i + 1)] = rs.config()locals()['config' + str(i + 1)].enable_device(self.cam_serials[i])locals()['config' + str(i + 1)].enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)locals()['config' + str(i + 1)].enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)locals()['pipeline' + str(i + 1)].start(locals()['config' + str(i + 1)])# 創建對齊對象(深度對齊顏色)locals()['align' + str(i + 1)] = rs.align(rs.stream.color)'''運行攝像頭'''try:while True:start_time = time.time()for i in range(len(self.cam_serials)):locals()['frames' + str(i + 1)] = locals()['pipeline' + str(i + 1)].wait_for_frames()# 獲取對齊幀集locals()['aligned_frames' + str(i + 1)] = locals()['align' + str(i + 1)].process(locals()['frames' + str(i + 1)])# 獲取對齊后的深度幀和彩色幀locals()['aligned_depth_frame' + str(i + 1)] = locals()['aligned_frames' + str(i + 1)].get_depth_frame()locals()['color_frame' + str(i + 1)] = locals()['aligned_frames' + str(i + 1)].get_color_frame()if not locals()['aligned_depth_frame' + str(i + 1)] or not locals()['color_frame' + str(i + 1)]:continue# 獲取顏色幀內參locals()['color_profile' + str(i + 1)] = locals()['color_frame' + str(i + 1)].get_profile()locals()['cvsprofile' + str(i + 1)] = rs.video_stream_profile(locals()['color_profile' + str(i + 1)])locals()['color_intrin' + str(i + 1)] = locals()['cvsprofile' + str(i + 1)].get_intrinsics()locals()['color_intrin_part' + str(i + 1)] = [locals()['color_intrin' + str(i + 1)].ppx,locals()['color_intrin' + str(i + 1)].ppy,locals()['color_intrin' + str(i + 1)].fx,locals()['color_intrin' + str(i + 1)].fy]# 【空間過濾器】locals()['spatial' + str(i + 1)] = rs.spatial_filter()locals()['spatial' + str(i + 1)].set_option(rs.option.filter_magnitude, 5)locals()['spatial' + str(i + 1)].set_option(rs.option.filter_smooth_alpha, 1)locals()['spatial' + str(i + 1)].set_option(rs.option.filter_smooth_delta, 50)locals()['spatial' + str(i + 1)].set_option(rs.option.holes_fill, 3)locals()['filtered_depth' + str(i + 1)] = locals()['spatial' + str(i + 1)].process(locals()['aligned_depth_frame' + str(i + 1)])locals()['depth_image' + str(i + 1)] = np.asanyarray(locals()['filtered_depth' + str(i + 1)].get_data())# print(locals()['depth_image' + str(i + 1)].dtype) # uint16locals()['color_image' + str(i + 1)] = np.asanyarray(locals()['color_frame' + str(i + 1)].get_data())# locals()['depth_image' + str(i + 1)] = np.asanyarray(# locals()['aligned_depth_frame' + str(i + 1)].get_data())# 【打印深度值看看、全部打印顯示】# np.set_printoptions(threshold=np.inf)# print(locals()['depth_image' + str(i + 1)])# 【計算深度圖數據中的0值】# locals()['all_pixels' + str(i + 1)], locals()['num_black' + str(i + 1)] = self.traversing_pixels(# locals()['depth_image' + str(i + 1)])locals()['num_black' + str(i + 1)] = self.traversing_pixels(locals()['depth_image' + str(i + 1)])# num_black = 0# all_pixels = 0# for row in range(480):# for colume in range(640):# all_pixels += 1# if locals()['depth_image' + str(i + 1)][row, colume] == 0:# num_black += 1print('depth_image分辨率:{}'.format(locals()['depth_image' + str(i + 1)].shape))# print('depth_image:{}'.format(num_black))# print('depth_image:{}'.format(num_black / all_pixels))print('depth_image:{}'.format(locals()['num_black' + str(i + 1)]))# print('depth_image:{}'.format(# locals()['num_black' + str(i + 1)] / locals()['all_pixels' + str(i + 1)]))# 以下這種卡的不行(get_distance()函數會把窗口搞崩潰(即使不很卡))# for row in range(locals()['aligned_depth_frame' + str(i + 1)].get_height()):# for colume in range(locals()['aligned_depth_frame' + str(i + 1)].get_width()):# all_pixels += 1# if locals()['depth_image' + str(i + 1)][row, colume] == 0:# # if locals()[# # 'aligned_depth_frame' + str(i + 1)].get_distance(row, colume) == 0:# num_black += 1# for pixel in locals()['depth_image' + str(i + 1)].ravel():# all_pixels += 1# if pixel == 0:# num_black += 1# print('depth_image分辨率:{}'.format(locals()['depth_image' + str(i + 1)].shape))# print('depth_image:{}'.format(num_black))# print('depth_image:{}'.format(num_black / all_pixels))locals()['depth_colormap' + str(i + 1)] = cv2.applyColorMap(cv2.convertScaleAbs(locals()['depth_image' + str(i + 1)], alpha=0.0425),cv2.COLORMAP_JET)locals()['image' + str(i + 1)] = np.hstack((locals()['color_image' + str(i + 1)], locals()['depth_colormap' + str(i + 1)]))cv2.imshow('win{}'.format(i + 1), locals()['image' + str(i + 1)])cv2.waitKey(1)end_time = time.time()print('單幀運行時間:{}'.format(end_time - start_time))finally:for i in range(len(self.cam_serials)):locals()['pipeline' + str(i + 1)].stop()if __name__ == '__main__':ObstacleDetection().obstacle_detection()

運行結果:

D:/20191211_obstacle_detection/obstacle_detection/191218_obstacle_detection_測試加空間過濾器和jit加速器.py:26: NumbaWarning: Compilation is falling back to object mode WITH looplifting enabled because Function "traversing_pixels" failed type inference due to: non-precise type pyobject [1] During: typing of argument at D:/20191211_obstacle_detection/obstacle_detection/191218_obstacle_detection_測試加空間過濾器和jit加速器.py (32)File "191218_obstacle_detection_測試加空間過濾器和jit加速器.py", line 32:def traversing_pixels(self, depth_image):num_black = 0^@jit D:/20191211_obstacle_detection/obstacle_detection/191218_obstacle_detection_測試加空間過濾器和jit加速器.py:26: NumbaWarning: Compilation is falling back to object mode WITHOUT looplifting enabled because Function "traversing_pixels" failed type inference due to: cannot determine Numba type of <class 'numba.dispatcher.LiftedLoop'>File "191218_obstacle_detection_測試加空間過濾器和jit加速器.py", line 34:def traversing_pixels(self, depth_image):<source elided>all_pixels = 0for pixel in depth_image.ravel():^@jit D:\20191031_tensorflow_yolov3\python\lib\site-packages\numba\object_mode_passes.py:178: NumbaWarning: Function "traversing_pixels" was compiled in object mode without forceobj=True, but has lifted loops.File "191218_obstacle_detection_測試加空間過濾器和jit加速器.py", line 31:# @jit(uint16[:](uint16[:], uint16[:]))def traversing_pixels(self, depth_image):^state.func_ir.loc)) D:\20191031_tensorflow_yolov3\python\lib\site-packages\numba\object_mode_passes.py:187: NumbaDeprecationWarning: Fall-back from the nopython compilation path to the object mode compilation path has been detected, this is deprecated behaviour.For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jitFile "191218_obstacle_detection_測試加空間過濾器和jit加速器.py", line 31:# @jit(uint16[:](uint16[:], uint16[:]))def traversing_pixels(self, depth_image):^warnings.warn(errors.NumbaDeprecationWarning(msg, state.func_ir.loc))

原因

原因暫不明,之前我是將需jit加速函數放在類中定義,現在我將此函數移出類外,發現警告消失了,猜測在類中也是可以的,只不過我不懂怎么設置罷了。。。

修改后代碼

# -*- coding: utf-8 -*- """ @File : 191219_obstacle_detection_測試加空間過濾器和jit加速器_將需jit加速函數放在類外部.py @Time : 2019/12/19 10:10 @Author : Dontla @Email : sxana@qq.com @Software: PyCharm """import timeimport numpy as np import pyrealsense2 as rs import cv2 import sys from numba import jit, vectorize, int64, int32, autojit, uint16, float64# @jit(nopython=True) # @jit # @vectorize([int64(int64, int64)], target='parallel') # @jit('int64(int64,int64[:])') # @jit(int64[:](int64[:], int64[:])) @jit def traversing_pixels(depth_image):num_black = 0all_pixels = 0for pixel in depth_image.ravel():all_pixels += 1if pixel == 0:num_black += 1return num_black# return all_pixels, num_blackclass ObstacleDetection(object):def __init__(self):# self.cam_serials = ['838212073161', '827312071726']self.cam_serials = ['838212073161']def obstacle_detection(self):# 攝像頭個數(在這里設置所需使用攝像頭的總個數)cam_num = 6ctx = rs.context()'''連續驗證機制'''# D·C 1911202:創建最大驗證次數max_veri_times;創建連續穩定值continuous_stable_value,用于判斷設備重置后是否處于穩定狀態max_veri_times = 100continuous_stable_value = 10print('\n', end='')print('開始連續驗證,連續驗證穩定值:{},最大驗證次數:{}:'.format(continuous_stable_value, max_veri_times))continuous_value = 0veri_times = 0while True:devices = ctx.query_devices()connected_cam_num = len(devices)if connected_cam_num == cam_num:continuous_value += 1if continuous_value == continuous_stable_value:breakelse:continuous_value = 0veri_times += 1if veri_times == max_veri_times:print("檢測超時,請檢查攝像頭連接!")sys.exit()print('攝像頭個數:{}'.format(connected_cam_num))'''循環reset攝像頭'''# hardware_reset()后是不是應該延遲一段時間?不延遲就會報錯print('\n', end='')print('開始初始化攝像頭:')for dev in ctx.query_devices():# 先將設備的序列號放進一個變量里,免得在下面for循環里訪問設備的信息過多(雖然不知道它會不會每次都重新訪問)dev_serial = dev.get_info(rs.camera_info.serial_number)# 匹配序列號,重置我們需重置的特定攝像頭(注意兩個for循環順序,哪個在外哪個在內很重要,不然會導致剛重置的攝像頭又被訪問導致報錯)for serial in self.cam_serials:if serial == dev_serial:dev.hardware_reset()# 像下面這條語句居然不會報錯,不是剛剛才重置了dev嗎?莫非區別在于沒有通過for循環ctx.query_devices()去訪問?# 是不是剛重置后可以通過ctx.query_devices()去查看有這個設備,但是卻沒有存儲設備地址?如果是這樣,# 也就能夠解釋為啥能夠通過len(ctx.query_devices())函數獲取設備數量,但訪問序列號等信息就會報錯的原因了print('攝像頭{}初始化成功'.format(dev.get_info(rs.camera_info.serial_number)))'''連續驗證機制'''# D·C 1911202:創建最大驗證次數max_veri_times;創建連續穩定值continuous_stable_value,用于判斷設備重置后是否處于穩定狀態print('\n', end='')print('開始連續驗證,連續驗證穩定值:{},最大驗證次數:{}:'.format(continuous_stable_value, max_veri_times))continuous_value = 0veri_times = 0while True:devices = ctx.query_devices()connected_cam_num = len(devices)if connected_cam_num == cam_num:continuous_value += 1if continuous_value == continuous_stable_value:breakelse:continuous_value = 0veri_times += 1if veri_times == max_veri_times:print("檢測超時,請檢查攝像頭連接!")sys.exit()print('攝像頭個數:{}'.format(connected_cam_num))'''配置各個攝像頭的基本對象'''for i in range(len(self.cam_serials)):locals()['pipeline' + str(i + 1)] = rs.pipeline(ctx)locals()['config' + str(i + 1)] = rs.config()locals()['config' + str(i + 1)].enable_device(self.cam_serials[i])locals()['config' + str(i + 1)].enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)locals()['config' + str(i + 1)].enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)locals()['pipeline' + str(i + 1)].start(locals()['config' + str(i + 1)])# 創建對齊對象(深度對齊顏色)locals()['align' + str(i + 1)] = rs.align(rs.stream.color)'''運行攝像頭'''try:while True:start_time = time.time()for i in range(len(self.cam_serials)):locals()['frames' + str(i + 1)] = locals()['pipeline' + str(i + 1)].wait_for_frames()# 獲取對齊幀集locals()['aligned_frames' + str(i + 1)] = locals()['align' + str(i + 1)].process(locals()['frames' + str(i + 1)])# 獲取對齊后的深度幀和彩色幀locals()['aligned_depth_frame' + str(i + 1)] = locals()['aligned_frames' + str(i + 1)].get_depth_frame()locals()['color_frame' + str(i + 1)] = locals()['aligned_frames' + str(i + 1)].get_color_frame()if not locals()['aligned_depth_frame' + str(i + 1)] or not locals()['color_frame' + str(i + 1)]:continue# 獲取顏色幀內參locals()['color_profile' + str(i + 1)] = locals()['color_frame' + str(i + 1)].get_profile()locals()['cvsprofile' + str(i + 1)] = rs.video_stream_profile(locals()['color_profile' + str(i + 1)])locals()['color_intrin' + str(i + 1)] = locals()['cvsprofile' + str(i + 1)].get_intrinsics()locals()['color_intrin_part' + str(i + 1)] = [locals()['color_intrin' + str(i + 1)].ppx,locals()['color_intrin' + str(i + 1)].ppy,locals()['color_intrin' + str(i + 1)].fx,locals()['color_intrin' + str(i + 1)].fy]# 【空間過濾器】locals()['spatial' + str(i + 1)] = rs.spatial_filter()locals()['spatial' + str(i + 1)].set_option(rs.option.filter_magnitude, 5)locals()['spatial' + str(i + 1)].set_option(rs.option.filter_smooth_alpha, 1)locals()['spatial' + str(i + 1)].set_option(rs.option.filter_smooth_delta, 50)locals()['spatial' + str(i + 1)].set_option(rs.option.holes_fill, 3)locals()['filtered_depth' + str(i + 1)] = locals()['spatial' + str(i + 1)].process(locals()['aligned_depth_frame' + str(i + 1)])locals()['depth_image' + str(i + 1)] = np.asanyarray(locals()['filtered_depth' + str(i + 1)].get_data())# print(locals()['depth_image' + str(i + 1)].dtype) # uint16locals()['color_image' + str(i + 1)] = np.asanyarray(locals()['color_frame' + str(i + 1)].get_data())# locals()['depth_image' + str(i + 1)] = np.asanyarray(# locals()['aligned_depth_frame' + str(i + 1)].get_data())# 【打印深度值看看、全部打印顯示】# np.set_printoptions(threshold=np.inf)# print(locals()['depth_image' + str(i + 1)])# 【計算深度圖數據中的0值】# locals()['all_pixels' + str(i + 1)], locals()['num_black' + str(i + 1)] = self.traversing_pixels(# locals()['depth_image' + str(i + 1)])locals()['num_black' + str(i + 1)] = traversing_pixels(locals()['depth_image' + str(i + 1)])# num_black = 0# all_pixels = 0# for row in range(480):# for colume in range(640):# all_pixels += 1# if locals()['depth_image' + str(i + 1)][row, colume] == 0:# num_black += 1print('depth_image分辨率:{}'.format(locals()['depth_image' + str(i + 1)].shape))# print('depth_image:{}'.format(num_black))# print('depth_image:{}'.format(num_black / all_pixels))print('depth_image:{}'.format(locals()['num_black' + str(i + 1)]))# print('depth_image:{}'.format(# locals()['num_black' + str(i + 1)] / locals()['all_pixels' + str(i + 1)]))# 以下這種卡的不行(get_distance()函數會把窗口搞崩潰(即使不很卡))# for row in range(locals()['aligned_depth_frame' + str(i + 1)].get_height()):# for colume in range(locals()['aligned_depth_frame' + str(i + 1)].get_width()):# all_pixels += 1# if locals()['depth_image' + str(i + 1)][row, colume] == 0:# # if locals()[# # 'aligned_depth_frame' + str(i + 1)].get_distance(row, colume) == 0:# num_black += 1# for pixel in locals()['depth_image' + str(i + 1)].ravel():# all_pixels += 1# if pixel == 0:# num_black += 1# print('depth_image分辨率:{}'.format(locals()['depth_image' + str(i + 1)].shape))# print('depth_image:{}'.format(num_black))# print('depth_image:{}'.format(num_black / all_pixels))locals()['depth_colormap' + str(i + 1)] = cv2.applyColorMap(cv2.convertScaleAbs(locals()['depth_image' + str(i + 1)], alpha=0.0425),cv2.COLORMAP_JET)locals()['image' + str(i + 1)] = np.hstack((locals()['color_image' + str(i + 1)], locals()['depth_colormap' + str(i + 1)]))cv2.imshow('win{}'.format(i + 1), locals()['image' + str(i + 1)])cv2.waitKey(1)end_time = time.time()print('單幀運行時間:{}'.format(end_time - start_time))finally:for i in range(len(self.cam_serials)):locals()['pipeline' + str(i + 1)].stop()if __name__ == '__main__':ObstacleDetection().obstacle_detection()```運行結果:```python D:\20191031_tensorflow_yolov3\python\python.exe D:/20191211_obstacle_detection/obstacle_detection/191219_obstacle_detection_測試加空間過濾器和jit加速器_將需jit加速函數放在類外部.py開始連續驗證,連續驗證穩定值:10,最大驗證次數:100: 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6開始初始化攝像頭: 攝像頭838212073161初始化成功開始連續驗證,連續驗證穩定值:10,最大驗證次數:100: 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 攝像頭個數:6 depth_image分辨率:(480, 640) depth_image:85152 單幀運行時間:0.9076991081237793 depth_image分辨率:(480, 640) depth_image:9551 ...

總結

以上是生活随笔為你收集整理的python numba.jit 警告:cannot determine Numba type of class 'numba.dispatcher.LiftedLoop'(加速代码)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 一级黄色录相 | 爆操网站| 都市激情综合 | 91精彩视频 | 黄色顶级片 | 天天av天天翘 | 182tv福利视频 | 美女搡bbb又爽又猛又黄www | 亚洲三级影院 | 亚洲国产精品成人午夜在线观看 | ass极品国模人体欣赏 | 亚洲精品免费视频 | 在线www| 国产极品视频在线观看 | 亚洲国产美女视频 | 长河落日 | 99热这里只有精品66 | 日韩免费在线观看 | 91国自产精品中文字幕亚洲 | 99久久免费看精品国产一区 | 日本一区二区三区免费在线观看 | 国内精品视频在线播放 | 国产免费午夜 | 日批免费观看视频 | www.在线看| 美女被娇喘流出白 | 日韩一二三级 | 在线成人av网站 | av手机 | 色婷婷18| 国产一区二区三区播放 | 99久久99久久精品国产片果冰 | 日韩不卡一区二区 | 中出少妇| 日韩欧美中文字幕在线播放 | 青青青网 | 男女插插插网站 | 欧美精品电影一区二区 | 午夜精品久久久久久久无码 | 四虎免费看黄 | 国产一区二区久久久 | 国产精品99精品无码视亚 | 成人精品视频一区二区三区尤物 | 这里只有精品国产 | 都市豪门艳霸淫美妇 | 精品人妻少妇一区二区三区 | 日韩欧美的一区二区 | 欧美人与禽性xxxxx杂性 | av5566| 日本久久视频 | 欧美精品久久久久久久多人混战 | 国产精品国产三级国产专播品爱网 | 88av网| 最新中文av | 日本免费网址 | 国产精品久久久久久久一区二区 | 青青草国产在线 | va在线| 黄色三级在线播放 | 男人疯狂高潮呻吟视频 | aaa在线| 青青草精品视频 | 国产嫩草av| 国产麻豆乱码精品一区二区三区 | 欧美视频一区二区在线观看 | 国产成人午夜精华液 | 超碰资源| 欧美日韩激情视频 | 丰满岳乱妇在线观看中字无码 | 亚洲一区二区三区香蕉 | av在线免费网址 | 婷婷综合在线视频 | 亚洲国产成人精品视频 | 国产精品成人3p一区二区三区 | 9191av| 久久午夜神器 | 中文字幕三级 | 久色网站 | 欧亚成人av | www.xxx在线观看 | 欧美性猛交xxxx偷拍洗澡 | 中文字幕激情视频 | 亚洲天堂va | 免费黄av| 在线观看的网站 | 丁香八月婷婷 | 黄色肉肉视频 | 亚洲电影一区二区 | 成人动漫一区二区三区 | 草色噜噜噜av在线观看香蕉 | 性涩av| 天堂av网手机版 | 99日精品 | av国产成人 | 欧美一级精品 | 亚洲精品免费在线 | 啪啪免费 | www国产亚洲精品久久网站 | 97在线视频免费 |