日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

曲线抽稀 java_Python实现曲线点抽稀算法

發布時間:2025/3/19 python 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 曲线抽稀 java_Python实现曲线点抽稀算法 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

目錄

何為抽稀

道格拉斯-普克(Douglas-Peuker)算法

垂距限值法

最后

正文

何為抽稀

在處理矢量化數據時,記錄中往往會有很多重復數據,對進一步數據處理帶來諸多不便。多余的數據一方面浪費了較多的存儲空間,另一方面造成所要表達的圖形不光滑或不符合標準。因此要通過某種規則,在保證矢量曲線形狀不變的情況下, 最大限度地減少數據點個數,這個過程稱為抽稀。

通俗的講就是對曲線進行采樣簡化,即在曲線上取有限個點,將其變為折線,并且能夠在一定程度保持原有形狀。比較常用的兩種抽稀算法是:道格拉斯-普克(Douglas-Peuker)算法和垂距限值法。

道格拉斯-普克(Douglas-Peuker)算法

Douglas-Peuker算法(DP算法)過程如下:

1、連接曲線首尾兩點A、B;

2、依次計算曲線上所有點到A、B兩點所在曲線的距離;

3、計算最大距離D,如果D小于閾值threshold,則去掉曲線上出A、B外的所有點;如果D大于閾值threshold,則把曲線以最大距離分割成兩段;

4、對所有曲線分段重復1-3步驟,知道所有D均小于閾值。即完成抽稀。

這種算法的抽稀精度與閾值有很大關系,閾值越大,簡化程度越大,點減少的越多;反之簡化程度越低,點保留的越多,形狀也越趨于原曲線。

下面是Python代碼實現:

# -*- coding: utf-8 -*-

"""-------------------------------------------------File Name: DouglasPeukerDescription : 道格拉斯-普克抽稀算法Author : J_haodate: 2017/8/16-------------------------------------------------Change Activity:2017/8/16: 道格拉斯-普克抽稀算法-------------------------------------------------"""

from __future__ import division

from math import sqrt, pow

__author__ = 'J_hao'

THRESHOLD = 0.0001 # 閾值

defpoint2LineDistance(point_a, point_b, point_c):

"""計算點a到點b c所在直線的距離:param point_a::param point_b::param point_c::return:"""

# 首先計算b c 所在直線的斜率和截距

if point_b[0] == point_c[0]:

return 9999999

slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])

intercept = point_b[1] - slope * point_b[0]

# 計算點a到b c所在直線的距離

distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))

return distance

classDouglasPeuker(object):

def__init__(self):

self.threshold = THRESHOLD

self.qualify_list = list()

self.disqualify_list = list()

defdiluting(self, point_list):

"""抽稀:param point_list:二維點列表:return:"""

if len(point_list) < 3:

self.qualify_list.extend(point_list[::-1])

else:

# 找到與收尾兩點連線距離最大的點

max_distance_index, max_distance = 0, 0

for index, point in enumerate(point_list):

if index in [0, len(point_list) - 1]:

continue

distance = point2LineDistance(point, point_list[0], point_list[-1])

if distance > max_distance:

max_distance_index = index

max_distance = distance

# 若最大距離小于閾值,則去掉所有中間點。 反之,則將曲線按最大距離點分割

if max_distance < self.threshold:

self.qualify_list.append(point_list[-1])

self.qualify_list.append(point_list[0])

else:

# 將曲線按最大距離的點分割成兩段

sequence_a = point_list[:max_distance_index]

sequence_b = point_list[max_distance_index:]

for sequence in [sequence_a, sequence_b]:

if len(sequence) < 3 and sequence == sequence_b:

self.qualify_list.extend(sequence[::-1])

else:

self.disqualify_list.append(sequence)

defmain(self, point_list):

self.diluting(point_list)

while len(self.disqualify_list) > 0:

self.diluting(self.disqualify_list.pop())

print self.qualify_list

print len(self.qualify_list)

if __name__ == '__main__':

d = DouglasPeuker()

d.main([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],

[104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],

[104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],

[104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],

[104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],

[104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],

[104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],

[104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],

[104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],

[104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],

[104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],

[104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],

[104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],

[104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],

[104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],

[104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],

[104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],

[104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],

[104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])

垂距限值法

垂距限值法其實和DP算法原理一樣,但是垂距限值不是從整體角度考慮,而是依次掃描每一個點,檢查是否符合要求。

算法過程如下:

1、以第二個點開始,計算第二個點到前一個點和后一個點所在直線的距離d;

2、如果d大于閾值,則保留第二個點,計算第三個點到第二個點和第四個點所在直線的距離d;若d小于閾值則舍棄第二個點,計算第三個點到第一個點和第四個點所在直線的距離d;

3、依次類推,直線曲線上倒數第二個點。

下面是Python代碼實現:

# -*- coding: utf-8 -*-

"""-------------------------------------------------File Name: LimitVerticalDistanceDescription : 垂距限值抽稀算法Author : J_haodate: 2017/8/17-------------------------------------------------Change Activity:2017/8/17:-------------------------------------------------"""

from __future__ import division

from math import sqrt, pow

__author__ = 'J_hao'

THRESHOLD = 0.0001 # 閾值

defpoint2LineDistance(point_a, point_b, point_c):

"""計算點a到點b c所在直線的距離:param point_a::param point_b::param point_c::return:"""

# 首先計算b c 所在直線的斜率和截距

if point_b[0] == point_c[0]:

return 9999999

slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])

intercept = point_b[1] - slope * point_b[0]

# 計算點a到b c所在直線的距離

distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))

return distance

classLimitVerticalDistance(object):

def__init__(self):

self.threshold = THRESHOLD

self.qualify_list = list()

defdiluting(self, point_list):

"""抽稀:param point_list:二維點列表:return:"""

self.qualify_list.append(point_list[0])

check_index = 1

while check_index < len(point_list) - 1:

distance = point2LineDistance(point_list[check_index],

self.qualify_list[-1],

point_list[check_index + 1])

if distance < self.threshold:

check_index += 1

else:

self.qualify_list.append(point_list[check_index])

check_index += 1

return self.qualify_list

if __name__ == '__main__':

l = LimitVerticalDistance()

diluting = l.diluting([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],

[104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],

[104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],

[104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],

[104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],

[104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],

[104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],

[104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],

[104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],

[104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],

[104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],

[104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],

[104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],

[104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],

[104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],

[104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],

[104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],

[104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],

[104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])

print len(diluting)

print(diluting)

最后

其實DP算法和垂距限值法原理一樣,DP算法是從整體上考慮一條完整的曲線,實現時較垂距限值法復雜,但垂距限值法可能會在某些情況下導致局部最優。另外在實際使用中發現采用點到另外兩點所在直���距離的方法來判斷偏離,在曲線弧度比較大的情況下比較準確。如果在曲線弧度比較小,彎曲程度不明顯時,這種方法抽稀效果不是很理想,建議使用三點所圍成的三角形面積作為判斷標準。下面是抽稀效果:

與50位技術專家面對面20年技術見證,附贈技術全景圖

總結

以上是生活随笔為你收集整理的曲线抽稀 java_Python实现曲线点抽稀算法的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。