日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

图像处理【代码合集】

發(fā)布時(shí)間:2025/3/17 编程问答 15 豆豆
生活随笔 收集整理的這篇文章主要介紹了 图像处理【代码合集】 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

發(fā)現(xiàn)一個(gè)比較全面的圖像處理方面的項(xiàng)目集合,里面涵蓋了特征提取、圖像分割、圖像分類、圖像匹配、圖像降噪,光流法等等方面的項(xiàng)目和代碼集合,項(xiàng)目是2012年之前的,但是涵蓋比較基礎(chǔ)的原理知識(shí),用到的時(shí)候可以參考一下:

?

?

Topic

Resources

References

Feature Extraction

  • SIFT [1] [Demo program][SIFT Library] [VLFeat]

  • PCA-SIFT [2] [Project]

  • Affine-SIFT [3] [Project]

  • SURF [4] [OpenSURF] [Matlab Wrapper]

  • Affine Covariant Features [5] [Oxford project]

  • MSER [6] [Oxford project] [VLFeat]

  • Geometric Blur [7] [Code]

  • Local Self-Similarity Descriptor [8] [Oxford implementation]

  • Global and Efficient Self-Similarity [9] [Code]

  • Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]

  • GIST [11] [Project]

  • Shape Context [12] [Project]

  • Color Descriptor [13] [Project]

  • Pyramids of Histograms of Oriented Gradients [Code]

  • Space-Time Interest Points (STIP) [14] [Code]

  • Boundary Preserving Dense Local Regions [15][Project]

  • D. Lowe.?Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]
  • Y. Ke and R. Sukthankar,?PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]
  • J.M. Morel and G.Yu,?ASIFT,?A new framework for fully affine invariant image comparison.?SIAM Journal on Imaging Sciences, 2009. [PDF]
  • H. Bay, T. Tuytelaars and L. V. Gool?SURF: Speeded Up Robust Features,?ECCV, 2006. [PDF]
  • K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool,?A comparison of affine region detectors.?IJCV, 2005. [PDF]
  • J. Matas, O. Chum, M. Urba, and T. Pajdla.?Robust wide baseline stereo from maximally stable extremal regions.?BMVC, 2002. [PDF]
  • A. C. Berg, T. L. Berg, and J. Malik.?Shape matching and object recognition using low distortion correspondences.?CVPR, 2005. [PDF]
  • E. Shechtman and M. Irani. Matching local self-similarities across images and videos,?CVPR, 2007. [PDF]
  • T. Deselaers and V. Ferrari.?Global and Efficient Self-Similarity for Object Classification and Detection.?CVPR?2010. [PDF]
  • N. Dalal and B. Triggs.?Histograms of Oriented Gradients for Human Detection.CVPR?2005. [PDF]
  • A. Oliva and A. Torralba.?Modeling the shape of the scene: a holistic representation of the spatial envelope,?IJCV, 2001. [PDF]
  • S. Belongie, J. Malik and J. Puzicha.?Shape matching and object recognition using?shape contexts,?PAMI, 2002. [PDF]
  • K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek,?Evaluating Color Descriptors for Object and Scene Recognition,?PAMI, 2010.
  • I. Laptev,?On Space-Time Interest Points, IJCV, 2005. [PDF]
  • J. Kim and K. Grauman,?Boundary Preserving Dense Local Regions,?CVPR?2011. [PDF]
  • Image Segmentation
    ?

    ?

    ?

    • Normalized Cut [1] [Matlab code]

    • Gerg Mori' Superpixel code [2] [Matlab code]

    • Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]

    • Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]

    • OWT-UCM Hierarchical Segmentation [5] [Resources]

    • Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]

    • Quick-Shift [7] [VLFeat]

    • SLIC Superpixels [8] [Project]

    • Segmentation by Minimum Code Length [9] [Project]

    • Biased Normalized Cut [10] [Project]

    • Segmentation Tree [11-12] [Project]

    • Entropy Rate Superpixel Segmentation [13] [Code]

  • J. Shi?and?J Malik,?Normalized Cuts and Image Segmentation,?PAMI, 2000 [PDF]
  • X. Ren and J. Malik.?Learning a classification model for segmentation.?ICCV, 2003. [PDF]
  • P. Felzenszwalb and D. Huttenlocher.?Efficient Graph-Based Image Segmentation,IJCV?2004. [PDF]
  • D. Comaniciu, P Meer.?Mean Shift: A Robust Approach Toward Feature Space Analysis.?PAMI?2002. [PDF]
  • P. Arbelaez, M. Maire, C. Fowlkes and J. Malik.?Contour Detection and Hierarchical Image Segmentation.?PAMI, 2011. [PDF]
  • A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi,?TurboPixels:?Fast Superpixels Using Geometric Flows,?PAMI?2009. [PDF]
  • A. Vedaldi and S. Soatto,?Quick Shift and Kernel Methodsfor Mode Seeking,?ECCV, 2008. [PDF]
  • R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,?SLIC Superpixels,?EPFL Technical Report, 2010. [PDF]
  • A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma ,?Unsupervised Segmentation of Natural Images via Lossy Data Compression,?CVIU, 2007. [PDF]
  • S. Maji,?N. Vishnoi?and?J. Malik,?Biased Normalized Cut,?CVPR?2011
  • E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,” ?ACCV?2009. [PDF]
  • N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,”?PAMI?1996 [PDF]
  • M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation,?CVPR?2011 [PDF]
  • Object Detection

    • A simple object detector with boosting [Project]

    • INRIA Object Detection and Localization Toolkit [1] [Project]

    • Discriminatively Trained Deformable Part Models [2] [Project]

    • Cascade Object Detection with Deformable Part Models [3] [Project]

    • Poselet [4] [Project]

    • Implicit Shape Model [5] [Project]

    • Viola and Jones's Face Detection [6] [Project]
  • N. Dalal and B. Triggs.?Histograms of Oriented Gradients for Human Detection.CVPR?2005. [PDF]
  • P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
    Object Detection with Discriminatively Trained Part Based Models,?PAMI, 2010 [PDF]
  • P. Felzenszwalb, R. Girshick, D. McAllester.?Cascade Object Detection with Deformable Part Models.?CVPR?2010 [PDF]
  • L. Bourdev, J. Malik,?Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations,?ICCV?2009 [PDF]
  • B. Leibe, A. Leonardis, B. Schiele.?Robust Object Detection with Interleaved Categorization and Segmentation,?IJCV, 2008. [PDF]
  • P. Viola and M. Jones,?Rapid Object Detection Using a Boosted Cascade of Simple Features,?CVPR?2001. [PDF]
  • Saliency Detection

    • Itti, Koch, and Niebur' saliency detection [1] [Matlab code]

    • Frequency-tuned salient region detection [2] [Project]

    • Saliency detection using maximum symmetric surround [3] [Project]

    • Attention via Information Maximization [4] [Matlab code]

    • Context-aware saliency detection [5] [Matlab code]

    • Graph-based visual saliency [6] [Matlab code]

    • Saliency detection: A spectral residual approach. [7] [Matlab code]

    • Segmenting salient objects from images and videos. [8] [Matlab code]

    • Saliency Using Natural statistics. [9] [Matlab code]

    • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

    • Learning to Predict Where Humans Look [11] [Project]

    • Global Contrast based Salient Region Detection [12] [Project]
  • L. Itti, C. Koch, and E. Niebur.?A model of saliency-based visual attention for rapid scene analysis.?PAMI, 1998. [PDF]
  • R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.?Frequency-tuned salient region detection. In?CVPR, 2009. [PDF]
  • R. Achanta and S. Susstrunk.?Saliency detection using maximum symmetric surround. In?ICIP, 2010. [PDF]
  • N. Bruce and J. Tsotsos.?Saliency based on information maximization. In?NIPS, 2005. [PDF]
  • S. Goferman, L. Zelnik-Manor, and A. Tal.?Context-aware saliency detection. InCVPR, 2010. [PDF]
  • J. Harel, C. Koch, and P. Perona.?Graph-based visual saliency. NIPS, 2007. [PDF]
  • X. Hou and L. Zhang.?Saliency detection: A spectral residual approach.?CVPR, 2007. [PDF]
  • E. Rahtu, J. Kannala, M. Salo, and J. Heikkila.?Segmenting salient objects from images and videos.?CVPR, 2010. [PDF]
  • L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell.?Sun: A bayesian framework for saliency using natural statistics.?Journal of Vision, 2008. [PDF]
  • D. Gao and N. Vasconcelos,?Discriminant Saliency for Visual Recognition from Cluttered Scenes,?NIPS, 2004. [PDF]
  • T. Judd and K. Ehinger and F. Durand and A. Torralba,?Learning to Predict Where Humans Look,?ICCV, 2009. [PDF]
  • M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu.?Global Contrast based Salient Region Detection.?CVPR?2011.
  • Image Classification

    • Pyramid Match [1] [Project]

    • Spatial Pyramid Matching [2] [Code]

    • Locality-constrained Linear Coding [3] [Project] [Matlab code]

    • Sparse Coding [4] [Project] [Matlab code]

    • Texture Classification [5] [Project]

    • Multiple Kernels for Image Classification [6] [Project]

    • Feature Combination [7] [Project]

    • SuperParsing [Code]
  • K. Grauman and T. Darrell,?The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features,?ICCV?2005. [PDF]
  • S. Lazebnik, C. Schmid, and J. Ponce.?Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories,?CVPR 2006?[PDF]
  • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.?Locality-constrained Linear Coding for Image Classification,?CVPR, 2010 [PDF]
  • J. Yang,?K. Yu, Y. Gong, T. Huang,?Linear Spatial Pyramid Matching using Sparse Coding for Image Classification,?CVPR, 2009 [PDF]
  • M. Varma and A. Zisserman,?A statistical approach to texture classification from single images, IJCV2005. [PDF]
  • A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman,?Multiple Kernels for Object Detection.?ICCV, 2009. [PDF]
  • P. Gehler and S. Nowozin,?On Feature Combination for Multiclass Object Detection,?ICCV, 2009. [PDF]
  • J. Tighe and S. Lazebnik,?SuperParsing: Scalable Nonparametric Image
    Parsing with Superpixels
    , ECCV 2010. [PDF]
  • Category-Independent Object Proposal

    • Objectness measure [1] [Code]

    • Parametric min-cut [2] [Project]

    • Object proposal [3] [Project]

  • B. Alexe, T. Deselaers, V. Ferrari,?What is an Object?,?CVPR?2010 [PDF]
  • J. Carreira and C. Sminchisescu.?Constrained Parametric Min-Cuts for Automatic Object Segmentation,?CVPR?2010. [PDF]
  • I. Endres and D. Hoiem.?Category Independent Object Proposals, ECCV 2010. [PDF]
  • MRF

    • Graph Cut [Project] [C++/Matlab Wrapper Code]
  • Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]
  • Shadow Detection

    • Shadow Detection using Paired Region [Project]

    • Ground shadow detection [Project]

    • ?
  • R. Guo, Q. Dai and D. Hoiem,?Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]
  • J.-F. Lalonde, A. A. Efros, S. G. Narasimhan,?Detecting Ground Shadowsin Outdoor Consumer Photographs,?ECCV?2010 [PDF]
  • Optical Flow

    • Kanade-Lucas-Tomasi Feature Tracker [C Code]

    • Optical Flow Matlab/C++ code by Ce Liu [Project]

    • Horn and Schunck's method by Deqing Sun [Code]

    • Black and Anandan's method by Deqing Sun [Code]

    • Optical flow code by Deqing Sun [Matlab Code] [Project]

    • Large Displacement Optical Flow by Thomas Brox [Executable for 64-bit Linux] [?Matlab Mex-functions for 64-bit Linux and 32-bit Windows] [Project]

    • Variational Optical Flow by Thomas Brox [Executable for 64-bit Linux] [?Executable for 32-bit Windows?] [?Matlab Mex-functions for 64-bit Linux and 32-bit Windows?] [Project]

  • B.D. Lucas and T. Kanade,?An Iterative Image Registration Technique with an Application to Stereo Vision,?IJCAI?1981. [PDF]
  • J. Shi, C. Tomasi,?Good Feature to Track,?CVPR?1994. [PDF]
  • C. Liu.?Beyond Pixels: Exploring New Representations and Applications for Motion Analysis.?Doctoral Thesis.?MIT?2009. [PDF]
  • B.K.P. Horn and B.G. Schunck,?Determining Optical Flow,?Artificial Intelligence1981. [PDF]
  • M. J. Black and P. Anandan,?A framework for the robust estimation of optical flow,?ICCV?93. [PDF]
  • D. Sun, S. Roth, and M. J. Black,?Secrets of optical flow estimation and their principles,?CVPR?2010. [PDF]
  • T. Brox, J. Malik,?Large displacement optical flow: descriptor matching in variational motion estimation,?PAMI, 2010 [PDF]
  • T. Brox, A. Bruhn, N. Papenberg, J. Weickert,?High accuracy optical flow estimation based on a theory for warping,?ECCV?2004 [PDF]
  • Object Tracking

    • Particle filter object tracking [1] [Project]

    • KLT Tracker [2-3] [Project]

    • MILTrack [4] [Code]

    • Incremental Learning for Robust Visual Tracking [5] [Project]

    • Online Boosting Trackers [6-7] [Project]

    • L1 Tracking [8] [Matlab code]

  • P. Perez, C. Hue, J. Vermaak, and M. Gangnet.?Color-Based Probabilistic Tracking?ECCV, 2002. [PDF]
  • B.D. Lucas and T. Kanade,?An Iterative Image Registration Technique with an Application to Stereo Vision,?IJCAI?1981. [PDF]
  • J. Shi, C. Tomasi,?Good Feature to Track,?CVPR?1994. [PDF]
  • B. Babenko, M. H. Yang, S. Belongie,?Robust Object Tracking with Online Multiple Instance Learning,?PAMI?2011 [PDF]
  • D. Ross,?J. Lim,?R.-S. Lin,?M.-H. Yang,?Incremental Learning for Robust Visual Tracking,?IJCV?2007 [PDF]
  • H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]
  • H. Grabner, C. Leistner, and H. Bischof,?Semi-supervised On-line Boosting for Robust Tracking,?ECCV 2008?[PDF]
  • X. Mei and H. Ling,?Robust Visual Tracking using L1 Minimization,?ICCV, 2009. [PDF]
  • Image Matting

    • Closed Form Matting [Code]

    • Spectral Matting [Project]

    • Learning-based Matting [Code]

  • A. Levin D. Lischinski and Y. Weiss.?A Closed Form Solution to Natural Image Matting,?PAMI?2008 [PDF]
  • A. Levin, A. Rav-Acha, D. Lischinski.?Spectral Matting.?PAMI 2008.?[PDF]
  • Y. Zheng and C. Kambhamettu,?Learning Based Digital Matting,?ICCV?2009 [PDF]
  • Bilateral Filtering

    • Fast Bilateral Filter [Project]

    • Real-time O(1) Bilateral Filtering [Code]

    • SVM for Edge-Preserving Filtering [Code]

  • Q. Yang, K.-H. Tan and N. Ahuja,??Real-time O(1) Bilateral Filtering,?
    CVPR?2009. [PDF]
  • Q. Yang, S. Wang, and N. Ahuja,?SVM for Edge-Preserving Filtering,?
    CVPR?2010. [PDF]
  • Image Denoising

    • K-SVD [Matlab code]

    • BLS-GSM [Project]

    • BM3D [Project]

    • FoE [Code]

    • GFoE [Code]

    • Non-local means [Code]

    • Kernel regression [Code]

    ?

    Image Super-Resolution

    • MRF for image super-resolution [Project]

    • Multi-frame image super-resolution [Project]

    • UCSC Super-resolution [Project]

    • Sprarse coding super-resolution [Code]

    ?

    Image Deblurring

    • Eficient Marginal Likelihood Optimization in Blind Deconvolution?[Code]

    • Analyzing spatially varying blur [Project]

    • Radon Transform?[Code]

    ?

    Image Quality Assessment

    • FSIM [1] [Project]

    • Degradation Model [2] [Project]

    • SSIM [3] [Project]

    • SPIQA [Code]

  • L. Zhang, L. Zhang, X. Mou and D. Zhang,?FSIM: A Feature Similarity Index for Image Quality Assessment,?TIP?2011. [PDF]
  • N. Damera-Venkata, and?T. D. Kite, W. S. Geisler,?B. L. Evans, and?A. C. Bovik,Image Quality Assessment Based on a Degradation Model,?TIP?2000. [PDF]
  • Z. Wang,?A. C.?Bovik,?H. R. Sheikh?and?E. P.?Simoncelli,?Image quality assessment: from error visibility to structural?similarity,?TIP?2004. [PDF]
  • B. Ghanem, E. Resendiz, and N. Ahuja,?Segmentation-Based Perceptual Image Quality Assessment (SPIQA),?ICIP?2008. [PDF]
  • Density Estimation

    • Kernel Density Estimation Toolbox [Project]
    ?

    Dimension Reduction

    • Dimensionality Reduction Toolbox [Project]

    • ISOMAP [Code]

    • LLE [Project]

    • Laplacian Eigenmaps [Code]

    • Diffusion maps [Code]

    ?

    Sparse Coding

    ??

    Low-Rank Matrix Completion

    ??

    Nearest Neighbors matching

    • ANN: Approximate Nearest Neighbor Searching [Project] [Matlab wrapper]

    • FLANN: Fast Library for Approximate Nearest Neighbors [Project]

    ?

    Steoreo

    • StereoMatcher [Project]
  • D. Scharstein and R. Szeliski.?A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,?IJCV?2002 [PDF]
  • Structure from motion

    • Boundler [1] [Project]

    ?

  • N. Snavely, S. M. Seitz, R. Szeliski.?Photo Tourism: Exploring image collections in 3D.?SIGGRAPH, 2006. [PDF]
  • Distance Transformation

    • Distance Transforms of Sampled Functions [1] [Project]
  • P. F. Felzenszwalb and D. P. Huttenlocher.?Distance transforms of sampled functions.?Technical report, Cornell University, 2004. [PDF]
  • Chamfer Matching

    • Fast Directional Chamfer Matching [Code]
  • M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa,?Fast Directional Chamfer Matching,?CVPR?2010 [PDF]
  • Clustering

    • K-Means [VLFeat] [Oxford code]

    • Spectral Clustering [UW Project][Code] [Self-Tuning code]

    • Affinity Propagation [Project]

    ?

    Classification

    • SVM [Libsvm] [SVM-Light] [SVM-Struct]

    • Boosting

    • Naive Bayes

    ?

    Regression

    • SVM

    • RVM

    • GPR

    ?

    Multiple Kernel Learning (MKL)

    • SHOGUN [Project]

    • OpenKernel.org [Project]

    • DOGMA (online algorithms) [Project]

    • SimpleMKL [Project]

  • S. Sonnenburg, G. R?tsch, C. Sch?fer, B. Sch?lkopf .?Large scale multiple kernel learning.?JMLR, 2006. [PDF]
  • F. Orabona and L. Jie.?Ultra-fast optimization algorithm for sparse multi kernel learning.?ICML, 2011. [PDF]
  • F. Orabona, L. Jie, and B. Caputo.?Online-batch strongly convex multi kernel learning.?CVPR, 2010. [PDF]
  • A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet.?Simplemkl.?JMRL, 2008. [PDF]
  • Multiple Instance Learning (MIL)

    • MIForests [1] [Project]

    • MILIS [2]

    • MILES [3] [Project] [Code]

    • DD-SVM [4] [Project]

  • C. Leistner, A. Saffari, and H. Bischof,?MIForests: Multiple-Instance Learning with Randomized Trees,?ECCV?2010. [PDF]
  • Z. Fu, A. Robles-Kelly, and J. Zhou,?MILIS: Multiple instance learning with instance selection,?PAMI?2010. [PDF]
  • Y. Chen, J. Bi and J. Z. Wang,?MILES: Multiple-Instance Learning via Embedded Instance Selection.?PAMI?2006 [PDF]
  • Yixin Chen and James Z. Wang,?Image Categorization by Learning and Reasoning with Regions,?JMLR?2004. [PDF]
  • Other Utilities

    • Code for downloading Flickr images, by James Hays [Code]

    • The Lightspeed Matlab Toolbox by Tom Minka [Code]

    • MATLAB Functions for Multiple View Geometry [Code]

    • Peter's Functions for Computer Vision [Code]

    • Statistical Pattern Recognition Toolbox [Code]
    ?

    ?

    Useful Links (dataset, lectures, and other softwares)

    Conference Information

    • Computer Image Analysis, Computer Vision Conferences

    Papers

    • Computer vision paper on the web

    • NIPS Proceedings

    Datasets

    • Compiled list of recognition datasets

    • Computer vision dataset from CMU

    Lectures

    • Videolectures

    Source Codes

    • Computer Vision Algorithm Implementations

    • OpenCV

    • Source Code Collection for Reproducible Research

    ?

    ?

    一、特征提取Feature Extraction:

    • SIFT [1] [Demo program][SIFT Library] [VLFeat]

    • PCA-SIFT [2] [Project]

    • Affine-SIFT [3] [Project]

    • SURF [4] [OpenSURF] [Matlab Wrapper]

    • Affine Covariant Features [5] [Oxford project]

    • MSER [6] [Oxford project] [VLFeat]

    • Geometric Blur [7] [Code]

    • Local Self-Similarity Descriptor [8] [Oxford implementation]

    • Global and Efficient Self-Similarity [9] [Code]

    • Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]

    • GIST [11] [Project]

    • Shape Context [12] [Project]

    • Color Descriptor [13] [Project]

    • Pyramids of Histograms of Oriented Gradients [Code]

    • Space-Time Interest Points (STIP) [14][Project] [Code]

    • Boundary Preserving Dense Local Regions [15][Project]

    • Weighted Histogram[Code]

    • Histogram-based Interest Points Detectors[Paper][Code]

    • An OpenCV - C++ implementation of Local Self Similarity Descriptors [Project]

    • Fast Sparse Representation with Prototypes[Project]

    • Corner Detection [Project]

    • AGAST Corner Detector: faster than FAST and even FAST-ER[Project]

    • Real-time Facial Feature Detection using Conditional Regression Forests[Project]

    • Global and Efficient Self-Similarity for Object Classification and Detection[code]

    • WαSH: Weighted α-Shapes for Local Feature Detection[Project]

    • HOG[Project]

    • Online Selection of Discriminative Tracking Features[Project]

    ?

    二、圖像分割I(lǐng)mage Segmentation:

    • Normalized Cut [1] [Matlab code]

    • Gerg Mori’ Superpixel code [2] [Matlab code]

    • Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]

    • Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]

    • OWT-UCM Hierarchical Segmentation [5] [Resources]

    • Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]

    • Quick-Shift [7] [VLFeat]

    • SLIC Superpixels [8] [Project]

    • Segmentation by Minimum Code Length [9] [Project]

    • Biased Normalized Cut [10] [Project]

    • Segmentation Tree [11-12] [Project]

    • Entropy Rate Superpixel Segmentation [13] [Code]

    • Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]

    • Ef?cient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]

    • Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]

    • Random Walks for Image Segmentation[Paper][Code]

    • Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]

    • An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]

    • Geodesic Star Convexity for Interactive Image Segmentation[Project]

    • Contour Detection and Image Segmentation Resources[Project][Code]

    • Biased Normalized Cuts[Project]

    • Max-flow/min-cut[Project]

    • Chan-Vese Segmentation using Level Set[Project]

    • A Toolbox of Level Set Methods[Project]

    • Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]

    • Improved C-V active contour model[Paper][Code]

    • A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]

    • Level Set Method Research by Chunming Li[Project]

    • ClassCut for Unsupervised Class Segmentation[code]

    • SEEDS: Superpixels Extracted via Energy-Driven Sampling?[Project][other]

    ?

    三、目標(biāo)檢測Object Detection:

    • A simple object detector with boosting [Project]

    • INRIA Object Detection and Localization Toolkit [1] [Project]

    • Discriminatively Trained Deformable Part Models [2] [Project]

    • Cascade Object Detection with Deformable Part Models [3] [Project]

    • Poselet [4] [Project]

    • Implicit Shape Model [5] [Project]

    • Viola and Jones’s Face Detection [6] [Project]

    • Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]

    • Hand detection using multiple proposals[Project]

    • Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]

    • Discriminatively trained deformable part models[Project]

    • Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]

    • Image Processing On Line[Project]

    • Robust Optical Flow Estimation[Project]

    • Where's Waldo: Matching People in Images of Crowds[Project]

    • Scalable Multi-class Object Detection[Project]

    • Class-Specific Hough Forests for Object Detection[Project]

    • Deformed Lattice Detection In Real-World Images[Project]

    • Discriminatively trained deformable part models[Project]

    ?

    四、顯著性檢測Saliency Detection:

    • Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]

    • Frequency-tuned salient region detection [2] [Project]

    • Saliency detection using maximum symmetric surround [3] [Project]

    • Attention via Information Maximization [4] [Matlab code]

    • Context-aware saliency detection [5] [Matlab code]

    • Graph-based visual saliency [6] [Matlab code]

    • Saliency detection: A spectral residual approach. [7] [Matlab code]

    • Segmenting salient objects from images and videos. [8] [Matlab code]

    • Saliency Using Natural statistics. [9] [Matlab code]

    • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

    • Learning to Predict Where Humans Look [11] [Project]

    • Global Contrast based Salient Region Detection [12] [Project]

    • Bayesian Saliency via Low and Mid Level Cues[Project]

    • Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]

    • Saliency Detection: A Spectral Residual Approach[Code]

    ?

    五、圖像分類、聚類Image Classification, Clustering

    • Pyramid Match [1] [Project]

    • Spatial Pyramid Matching [2] [Code]

    • Locality-constrained Linear Coding [3] [Project] [Matlab code]

    • Sparse Coding [4] [Project] [Matlab code]

    • Texture Classification [5] [Project]

    • Multiple Kernels for Image Classification [6] [Project]

    • Feature Combination [7] [Project]

    • SuperParsing [Code]

    • Large Scale Correlation Clustering Optimization[Matlab code]

    • Detecting and Sketching the Common[Project]

    • Self-Tuning Spectral Clustering[Project][Code]

    • User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]

    • Filters for Texture Classification[Project]

    • Multiple Kernel Learning for Image Classification[Project]

    • SLIC Superpixels[Project]

    ?

    六、摳圖Image Matting

    • A Closed Form Solution to Natural Image Matting [Code]

    • Spectral Matting [Project]

    • Learning-based Matting [Code]

    ?

    七、目標(biāo)跟蹤Object Tracking:

    • A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]

    • Object Tracking via Partial Least Squares Analysis[Paper][Code]

    • Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]

    • Online Visual Tracking with Histograms and Articulating Blocks[Project]

    • Incremental Learning for Robust Visual Tracking[Project]

    • Real-time Compressive Tracking[Project]

    • Robust Object Tracking via Sparsity-based Collaborative Model[Project]

    • Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]

    • Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]

    • Superpixel Tracking[Project]

    • Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]

    • Online Multiple Support Instance Tracking [Paper][Code]

    • Visual Tracking with Online Multiple Instance Learning[Project]

    • Object detection and recognition[Project]

    • Compressive Sensing Resources[Project]

    • Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]

    • Tracking-Learning-Detection[Project][OpenTLD/C++ Code]

    • the HandVu:vision-based hand gesture interface[Project]

    • Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[Project]

    ?

    八、Kinect:

    • Kinect toolbox[Project]

    • OpenNI[Project]

    • zouxy09 CSDN Blog[Resource]

    • FingerTracker 手指跟蹤[code]

    ?

    九、3D相關(guān):

    • 3D Reconstruction of a Moving Object[Paper] [Code]

    • Shape From Shading Using Linear Approximation[Code]

    • Combining Shape from Shading and Stereo Depth Maps[Project][Code]

    • Shape from Shading: A Survey[Paper][Code]

    • A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]

    • Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]

    • A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]

    • Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]

    • Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]

    • Learning 3-D Scene Structure from a Single Still Image[Project]

    ?

    十、機(jī)器學(xué)習(xí)算法:

    • Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab class?providing interface toANN library]

    • Random Sampling[code]

    • Probabilistic Latent Semantic Analysis (pLSA)[Code]

    • FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]

    • Fast Intersection / Additive Kernel SVMs[Project]

    • SVM[Code]

    • Ensemble learning[Project]

    • Deep Learning[Net]

    • Deep Learning Methods for Vision[Project]

    • Neural Network for Recognition of Handwritten Digits[Project]

    • Training a deep autoencoder or a classifier on MNIST digits[Project]

    • THE MNIST DATABASE of handwritten digits[Project]

    • Ersatz:deep neural networks in the cloud[Project]

    • Deep Learning [Project]

    • sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]

    • Weka 3: Data Mining Software in Java[Project]

    • Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凱)[Video]

    • CNN - Convolutional neural network class[Matlab Tool]

    • Yann LeCun's Publications[Wedsite]

    • LeNet-5, convolutional neural networks[Project]

    • Training a deep autoencoder or a classifier on MNIST digits[Project]

    • Deep Learning 大牛Geoffrey E. Hinton's HomePage[Website]

    • Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[Code]

    • Sparse coding simulation software[Project]

    • Visual Recognition and Machine Learning Summer School[Software]

    ?

    十一、目標(biāo)、行為識(shí)別Object, Action Recognition:

    • Action Recognition by Dense Trajectories[Project][Code]

    • Action Recognition Using a Distributed Representation of Pose and Appearance[Project]

    • Recognition Using Regions[Paper][Code]

    • 2D Articulated Human Pose Estimation[Project]

    • Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]

    • Estimating Human Pose from Occluded Images[Paper][Code]

    • Quasi-dense wide baseline matching[Project]

    • ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Project]

    • Real Time Head Pose Estimation with Random Regression Forests[Project]

    • 2D Action Recognition Serves 3D Human Pose Estimation[

    • A Hough Transform-Based Voting Framework for Action Recognition[

    • Motion Interchange Patterns for Action Recognition in Unconstrained Videos[

    • 2D articulated human pose estimation software[Project]

    • Learning and detecting shape models [code]

    • Progressive Search Space Reduction for Human Pose Estimation[Project]

    • Learning Non-Rigid 3D Shape from 2D Motion[Project]

    ?

    十二、圖像處理:

    • Distance Transforms of Sampled Functions[Project]

    • The Computer Vision Homepage[Project]

    • Efficient appearance distances between windows[code]

    • Image Exploration algorithm[code]

    • Motion Magnification 運(yùn)動(dòng)放大 [Project]

    • Bilateral Filtering for Gray and Color Images 雙邊濾波器 [Project]

    • A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [

    ?

    十三、一些實(shí)用工具:

    • EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project] [Code]

    • a development kit of matlab mex functions for OpenCV library[Project]

    • Fast Artificial Neural Network Library[Project]

    ?

    十四、人手及指尖檢測與識(shí)別:

    • finger-detection-and-gesture-recognition [Code]

    • Hand and Finger Detection using JavaCV[Project]

    • Hand and fingers detection[Code]

    ?

    十五、場景解釋:

    • Nonparametric Scene Parsing via Label Transfer [Project]

    ?

    十六、光流Optical flow:

    • High accuracy optical flow using a theory for warping [Project]

    • Dense Trajectories Video Description [Project]

    • SIFT Flow: Dense Correspondence across Scenes and its Applications[Project]

    • KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker [Project]

    • Tracking Cars Using Optical Flow[Project]

    • Secrets of optical flow estimation and their principles[Project]

    • implmentation of the Black and Anandan dense optical flow method[Project]

    • Optical Flow Computation[Project]

    • Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[Project]

    • A Database and Evaluation Methodology for Optical Flow[Project]

    • optical flow relative[Project]

    • Robust Optical Flow Estimation [Project]

    • optical flow[Project]

    ?

    十七、圖像檢索Image Retrieval:

    • Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval?[Paper][code]

    ?

    十八、馬爾科夫隨機(jī)場Markov Random Fields:

    • Markov Random Fields for Super-Resolution?[Project]

    • A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors [Project]

    ?

    十九、運(yùn)動(dòng)檢測Motion detection:

    • Moving Object Extraction, Using Models or Analysis of Regions?[Project]

    • Background Subtraction: Experiments and Improvements for ViBe [Project]

    • A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications [Project]

    • changedetection.net: A new change detection benchmark dataset[Project]

    • ViBe - a powerful technique for background detection and subtraction in video sequences[Project]

    • Background Subtraction Program[Project]

    • Motion Detection Algorithms[Project]

    • Stuttgart Artificial Background Subtraction Dataset[Project]

    • Object Detection, Motion Estimation, and Tracking[Project]

      ?

      Feature Detection and Description

      General Libraries:

      • VLFeat?– Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. See?Modern features: Software?– Slides providing a demonstration of VLFeat and also links to other software. Check also?VLFeat hands-on session training

      • OpenCV?– Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

      ?

      Fast Keypoint Detectors for Real-time Applications:

      • FAST?– High-speed corner detector implementation for a wide variety of platforms

      • AGAST?– Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).

      ?

      Binary Descriptors for Real-Time Applications:

      • BRIEF?– C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)

      • ORB?– OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)

      • BRISK?– Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)

      • FREAK?– Faster than BRISK (invariant to rotations and scale) (CVPR 2012)

      ?

      SIFT and SURF Implementations:

      • SIFT:?VLFeat,?OpenCV,?Original code?by David Lowe,?GPU implementation,?OpenSIFT

      • SURF:?Herbert Bay’s code,?OpenCV,?GPU-SURF

      ?

      Other Local Feature Detectors and Descriptors:

      • VGG Affine Covariant features?– Oxford code for various affine covariant feature detectors and descriptors.

      • LIOP descriptor?– Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).

      • Local Symmetry Features?– Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).

      ?

      Global Image Descriptors:

      • GIST?– Matlab code for the GIST descriptor

      • CENTRIST?– Global visual descriptor for scene categorization and object detection (PAMI 2011)

      ?

      Feature Coding and Pooling

      • VGG Feature Encoding Toolkit?– Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.

      • Spatial Pyramid Matching?– Source code for feature pooling based on spatial pyramid matching (widely used for image classification)

      ?

      Convolutional Nets and Deep Learning

      • EBLearn?– C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.

      • Torch7?– Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.

      • Deep Learning?- Various links for deep learning software.

      ?

      Part-Based Models

      ?

      • Deformable Part-based Detector?– Library provided by the authors of the original paper (state-of-the-art in PASCAL VOC detection task)

      • Efficient Deformable Part-Based Detector?– Branch-and-Bound implementation for a deformable part-based detector.

      • Accelerated Deformable Part Model?– Efficient implementation of a method that achieves the exact same performance of deformable part-based detectors but with significant acceleration (ECCV 2012).

      • Coarse-to-Fine Deformable Part Model?– Fast approach for deformable object detection (CVPR 2011).

      • Poselets?– C++ and Matlab versions for object detection based on poselets.

      • Part-based Face Detector and Pose Estimation?– Implementation of a unified approach for face detection, pose estimation, and landmark localization (CVPR 2012).

        ?

        Attributes and Semantic Features

        • Relative Attributes?– Modified implementation of RankSVM to train Relative Attributes (ICCV 2011).

        • Object Bank?– Implementation of object bank semantic features (NIPS 2010). See also?ActionBank

        • Classemes, Picodes, and Meta-class features?– Software for extracting high-level image descriptors (ECCV 2010, NIPS 2011, CVPR 2012).

        Large-Scale Learning

        • Additive Kernels?– Source code for fast additive kernel SVM classifiers (PAMI 2013).

        • LIBLINEAR?– Library for large-scale linear SVM classification.

        • VLFeat?– Implementation for Pegasos SVM and Homogeneous Kernel map.

        Fast Indexing and Image Retrieval

        • FLANN?– Library for performing fast approximate nearest neighbor.

        • Kernelized LSH?– Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).

        • ITQ Binary codes?– Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).

        • INRIA Image Retrieval?– Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).

        Object Detection

        • See?Part-based Models?and?Convolutional Nets?above.

        • Pedestrian Detection at 100fps?– Very fast and accurate pedestrian detector (CVPR 2012).

        • Caltech Pedestrian Detection Benchmark?– Excellent resource for pedestrian detection, with various links for state-of-the-art implementations.

        • OpenCV?– Enhanced implementation of Viola&Jones real-time object detector, with trained models for face detection.

        • Efficient Subwindow Search?– Source code for branch-and-bound optimization for efficient object localization (CVPR 2008).

        3D Recognition

        • Point-Cloud Library?– Library for 3D image and point cloud processing.

        Action Recognition

        • ActionBank?– Source code for action recognition based on the ActionBank representation (CVPR 2012).

        • STIP Features?– software for computing space-time interest point descriptors

        • Independent Subspace Analysis?– Look for Stacked ISA for Videos (CVPR 2011)

        • Velocity Histories of Tracked Keypoints?- C++ code for activity recognition using the velocity histories of tracked keypoints (ICCV 2009)


        Datasets

        Attributes

        • Animals with Attributes?– 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.

        • aYahoo and aPascal?– Attribute annotations for images collected from Yahoo and Pascal VOC 2008.

        • FaceTracer?– 15,000 faces annotated with 10 attributes and fiducial points.

        • PubFig?– 58,797 face images of 200 people with 73 attribute classifier outputs.

        • [url=http://vis-www.cs.umass.edu/lfw/]LFW[/url]?– 13,233 face images of 5,749 people with 73 attribute classifier outputs.

        • Human Attributes?– 8,000 people with annotated attributes. Check also this?link?for another dataset of human attributes.

        • SUN Attribute Database?– Large-scale scene attribute database with a taxonomy of 102 attributes.

        • ImageNet Attributes?– Variety of attribute labels for the ImageNet dataset.

        • Relative attributes?– Data for OSR and a subset of PubFig datasets. Check also this?link?for the WhittleSearch data.

        • Attribute Discovery Dataset?– Images of shopping categories associated with textual descriptions.

        Fine-grained Visual Categorization

        • Caltech-UCSD Birds Dataset?– Hundreds of bird categories with annotated parts and attributes.

        • Stanford Dogs Dataset?– 20,000 images of 120 breeds of dogs from around the world.

        • Oxford-IIIT Pet Dataset?– 37 category pet dataset with roughly 200 images for each class. Pixel level trimap segmentation is included.

        • Leeds Butterfly Dataset?– 832 images of 10 species of butterflies.

        • Oxford Flower Dataset?– Hundreds of flower categories.

        Face Detection

        • [url=http://vis-www.cs.umass.edu/fddb/]FDDB[/url]?– UMass face detection dataset and benchmark (5,000+ faces)

        • CMU/MIT?– Classical face detection dataset.

        Face Recognition

        • Face Recognition Homepage?– Large collection of face recognition datasets.

        • [url=http://vis-www.cs.umass.edu/lfw/]LFW[/url]?– UMass unconstrained face recognition dataset (13,000+ face images).

        • NIST Face Homepage?– includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.

        • CMU Multi-PIE?– contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.

        • FERET?– Classical face recognition dataset.

        • Deng Cai’s face dataset in Matlab Format?– Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.

        • SCFace?– Low-resolution face dataset captured from surveillance cameras.

        Handwritten Digits

        • MNIST?– large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.

        Pedestrian Detection

        • Caltech Pedestrian Detection Benchmark?– 10 hours of video taken from a vehicle,350K bounding boxes for about 2.3K unique pedestrians.

        • INRIA Person Dataset?– Currently one of the most popular pedestrian detection datasets.

        • ETH Pedestrian Dataset?– Urban dataset captured from a stereo rig mounted on a stroller.

        • TUD-Brussels Pedestrian Dataset?– Dataset with image pairs recorded in an crowded urban setting with an onboard camera.

        • PASCAL Human Detection?– One of 20 categories in PASCAL VOC detection challenges.

        • USC Pedestrian Dataset?– Small dataset captured from surveillance cameras.

        Generic Object Recognition

        • ImageNet?– Currently the largest visual recognition dataset in terms of number of categories and images.

        • Tiny Images?– 80 million 32x32 low resolution images.

        • Pascal VOC?– One of the most influential visual recognition datasets.

        • Caltech 101?/?Caltech 256?– Popular image datasets containing 101 and 256 object categories, respectively.

        • MIT LabelMe?– Online annotation tool for building computer vision databases.

        Scene Recognition

        • MIT SUN Dataset?– MIT scene understanding dataset.

        • UIUC Fifteen Scene Categories?– Dataset of 15 natural scene categories.

        Feature Detection and Description

        • VGG Affine Dataset?– Widely used dataset for measuring performance of feature detection and description. CheckVLBenchmarksfor an evaluation framework.

        Action Recognition

        • Benchmarking Activity Recognition?– CVPR 2012 tutorial covering various datasets for action recognition.

        RGBD Recognition

        • RGB-D Object Dataset?– Dataset containing 300 common household objects

        Reference:

        ?

        [1]:?http://rogerioferis.com/VisualRecognitionAndSearch/Resources.html


        特征提取
        • SURF特征:?http://www.vision.ee.ethz.ch/software/index.de.html(當(dāng)然這只是其中之一)

        • LBP特征(一種紋理特征):http://www.comp.hkbu.edu.hk/~icpr06/tutorials/Pietikainen.html

        • Fast Corner Detection(OpenCV中的Fast算法):FAST Corner Detection -- Edward Rosten

        機(jī)器視覺
        • A simple object detector with boosting(Awarded the Best Short Course Prize at ICCV 2005,So了解adaboost的推薦之作):http://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html

        • Boosting(該網(wǎng)頁上有相當(dāng)全的Boosting的文章和幾個(gè)Boosting代碼,本人推薦):http://cbio.mskcc.org/~aarvey/boosting_papers.html

        • Adaboost Matlab 工具:http://graphics.cs.msu.ru/en/science/research/machinelearning/adaboosttoolbox

        • MultiBoost(不說啥了,多類Adaboost算法的程序):http://sourceforge.net/projects/multiboost/

        • TextonBoost(我們教研室王冠夫師兄的畢設(shè)):?Jamie Shotton - Code

        • LibSvm的老爹(推薦):?http://www.csie.ntu.edu.tw/~cjlin/

        • Conditional Random Fields(CRF論文+Code列表,推薦)

        • CRF++: Yet Another CRF toolkit

        • Conditional Random Field (CRF) Toolbox for Matlab

        • Tree CRFs

        • LingPipe: Installation

        • Hidden Markov Models(推薦)

        • 隱馬爾科夫模型(Hidden Markov Models)系列之一?- eaglex的專欄 - 博客頻道?- CSDN.NET(推薦)

        綜合代碼
        • CvPapers(好吧,牛吧網(wǎng)站,里面有ICCV,CVPR,ECCV,SIGGRAPH的論文收錄,然后還有一些論文的代碼搜集,要求加精!):http://www.cvpapers.com/

        • Computer Vision Software(里面代碼很多,并詳細(xì)的給出了分類):http://peipa.essex.ac.uk/info/software.html

        • 某人的Windows Live(我看里面東東不少就收藏了):https://skydrive.live.com/?cid=3b6244088fd5a769#cid=3B6244088FD5A769&id=3B6244088FD5A769!523

        • MATLAB and Octave Functions for Computer Vision and Image Processing(這個(gè)里面的東西也很全,只是都是用Matlab和Octave開發(fā)的):http://www.csse.uwa.edu.au/~pk/research/matlabfns/

        • Computer Vision Resources(里面的視覺算法很多,給出了相應(yīng)的論文和Code,挺好的):https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html

        • MATLAB Functions for Multiple View Geometry(關(guān)于物體多視角計(jì)算的庫):http://www.robots.ox.ac.uk/~vgg/hzbook/code/

        • Evolutive Algorithm based on Na?ve Bayes models Estimation(單獨(dú)列了一個(gè)算法的Code):http://www.cvc.uab.cat/~xbaro/eanbe/#_Software

        主頁代碼
        • Pablo Negri's Home Page

        • Jianxin Wu's homepage

        • Peter Carbonetto

        • Markov Random Fields for Super-Resolution

        • Detecting and Sketching the Common

        • Pedro Felzenszwalb

        • Hae JONG, SEO

        • CAP 5416 - Computer Vision

        • Parallel Tracking and Mapping for Small AR Workspaces (PTAM)

        • Deva Ramanan - UC Irvine - Computer Vision

        • Raghuraman Gopalan

        • Hui Kong

        • Jamie Shotton - Post-Doctoral Researcher in Computer Vision

        • Jean-Yves AUDIBERT

        • Olga Veksler

        • Stephen Gould

        • Publications (Last Update: 09/30/10)

        • Karim Ali - FlowBoost

        • A simple parts and structure object detector

        • Code - Oxford Brookes Vision Group

        • Taku Kudo

        行人檢測
        • Histogram of Oriented Gradient (Windows)

        • INRIA Pedestrian detector

        • Poselets

        • William Robson Schwartz - Softwares

        • calvin upper-body detector v1.02

        • RPT@CVG

        • Main Page

        • Source Code

        • Dr. Luciano Spinello

        • Pedestrian Detection

        • Class-Specific Hough Forests for Object Detection

        • Jianxin Wu's homepage(就是上面的)

        • Berkeley大學(xué)做的Pedestrian Detector,使用交叉核的支持向量機(jī),特征使用HOG金字塔,提供Matlab和C++混編的代碼:http://www.cs.berkeley.edu/~smaji/projects/ped-detector/

        視覺壁障
        • High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning

        • TLD(2010年很火的tracking算法)

        • online boosting trackers

        • Boris Babenko

        • Optical Flow Algorithm Evaluation (提供了一個(gè)動(dòng)態(tài)貝葉斯網(wǎng)絡(luò)框架,例如遞 歸信息處理與分析、卡爾曼濾波、粒子濾波、序列蒙特卡羅方法等,C++寫的)http://of-eval.sourceforge.net/

        物體檢測算法
        • Object Detection

        • Software for object detection

        人臉檢測
        • Source Code

        • 10個(gè)人臉檢測項(xiàng)目

        • Jianxin Wu's homepage(又是這貨)

        ICA獨(dú)立成分分析
        • An ICA page-papers,code,demo,links (Tony Bell)

        • FastICA

        • Cached k-d tree search for ICP algorithms

        濾波算法
        • 卡爾曼濾波:The Kalman Filter(終極網(wǎng)頁)

        • Bayesian Filtering Library:?The Bayesian Filtering Library

        路面識(shí)別
        • Source Code

        • Vanishing point detection for general road detection

        分割算法
        • MATLAB Normalized Cuts Segmentation Code:software

        • 超像素分割:SLIC Superpixels

    以上是從下面網(wǎng)址中匯總來的:

    http://www.360doc.com/content/12/0201/11/8703626_183332994.shtml

    https://www.cnblogs.com/findumars/p/5009003.html

    另外,在http://blog.csdn.net/zouxy09/article/details/8550952里也給出了一些項(xiàng)目鏈接匯總。

    新人創(chuàng)作打卡挑戰(zhàn)賽發(fā)博客就能抽獎(jiǎng)!定制產(chǎn)品紅包拿不停!

    總結(jié)

    以上是生活随笔為你收集整理的图像处理【代码合集】的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。