日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > linux >内容正文

linux

Linux内核最新的连续内存分配器(CMA)——避免预留大块内存

發布時間:2025/3/17 linux 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Linux内核最新的连续内存分配器(CMA)——避免预留大块内存 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

By LiAnLab.org/宋寶華

在我們使用ARM等嵌入式Linux系統的時候,一個頭疼的問題是GPU,Camera,HDMI等都需要預留大量連續內存,這部分內存平時不用, 但是一般的做法又必須先預留著。目前,Marek Szyprowski和Michal Nazarewicz實現了一套全新的Contiguous Memory Allocator。通過這套機制,我們可以做到不預留內存,這些內存平時是可用的,只有當需要的時候才被分配給Camera,HDMI等設備。下面分析 它的基本代碼流程。

聲明連續內存

內核啟動過程中arch/arm/mm/init.c中的arm_memblock_init()會調用dma_contiguous_reserve(min(arm_dma_limit, arm_lowmem_limit));

該函數位于:drivers/base/dma-contiguous.c

/*** dma_contiguous_reserve() - reserve area for contiguous memory handling* @limit: End address of the reserved memory (optional, 0 for any).** This function reserves memory from early allocator. It should be* called by arch specific code once the early allocator (memblock or bootmem)* has been activated and all other subsystems have already allocated/reserved* memory.*/ void __init dma_contiguous_reserve(phys_addr_t limit) {unsigned long selected_size = 0;pr_debug("%s(limit %08lx)\n", __func__, (unsigned long)limit);if (size_cmdline != -1) {selected_size = size_cmdline;} else { #ifdef CONFIG_CMA_SIZE_SEL_MBYTESselected_size = size_bytes; #elif defined(CONFIG_CMA_SIZE_SEL_PERCENTAGE)selected_size = cma_early_percent_memory(); #elif defined(CONFIG_CMA_SIZE_SEL_MIN)selected_size = min(size_bytes, cma_early_percent_memory()); #elif defined(CONFIG_CMA_SIZE_SEL_MAX)selected_size = max(size_bytes, cma_early_percent_memory()); #endif} if (selected_size) {pr_debug("%s: reserving %ld MiB for global area\n", __func__,selected_size / SZ_1M);dma_declare_contiguous(NULL, selected_size, 0, limit);} };

其中的size_bytes定義為:

static const unsigned long size_bytes = CMA_SIZE_MBYTES * SZ_1M; 默認情況下,CMA_SIZE_MBYTES會被定義為16MB,來源于CONFIG_CMA_SIZE_MBYTES=16

->

int __init dma_declare_contiguous(struct device *dev, unsigned long size,phys_addr_t base, phys_addr_t limit) {.../* Reserve memory */if (base) {if (memblock_is_region_reserved(base, size) ||memblock_reserve(base, size) < 0) {base = -EBUSY;goto err;}} else {/** Use __memblock_alloc_base() since* memblock_alloc_base() panic()s.*/phys_addr_t addr = __memblock_alloc_base(size, alignment, limit);if (!addr) {base = -ENOMEM;goto err;} else if (addr + size > ~(unsigned long)0) {memblock_free(addr, size);base = -EINVAL;base = -EINVAL;goto err;} else {base = addr;}}/** Each reserved area must be initialised later, when more kernel* subsystems (like slab allocator) are available.*/r->start = base;r->size = size;r->dev = dev;cma_reserved_count++;pr_info("CMA: reserved %ld MiB at %08lx\n", size / SZ_1M,(unsigned long)base);/* Architecture specific contiguous memory fixup. */dma_contiguous_early_fixup(base, size);return 0; err:pr_err("CMA: failed to reserve %ld MiB\n", size / SZ_1M);return base; }

由此可見,連續內存區域也是在內核啟動的早期,通過__memblock_alloc_base()拿到的。

另外:

drivers/base/dma-contiguous.c里面的core_initcall()會導致cma_init_reserved_areas()被調用:

static int __init cma_init_reserved_areas(void) {struct cma_reserved *r = cma_reserved;unsigned i = cma_reserved_count;pr_debug("%s()\n", __func__);for (; i; --i, ++r) {struct cma *cma;cma = cma_create_area(PFN_DOWN(r->start),r->size >> PAGE_SHIFT);if (!IS_ERR(cma))dev_set_cma_area(r->dev, cma);}return 0; } core_initcall(cma_init_reserved_areas);

cma_create_area()會調用cma_activate_area(),cma_activate_area()函數則會針對每個page調用:

init_cma_reserved_pageblock(pfn_to_page(base_pfn));

這個函數則會通過set_pageblock_migratetype(page, MIGRATE_CMA)將頁設置為MIGRATE_CMA類型的:

#ifdef CONFIG_CMA /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ void __init init_cma_reserved_pageblock(struct page *page) { unsigned i = pageblock_nr_pages;struct page *p = page;do {__ClearPageReserved(p);set_page_count(p, 0);} while (++p, --i);set_page_refcounted(page);set_pageblock_migratetype(page, MIGRATE_CMA);__free_pages(page, pageblock_order);totalram_pages += pageblock_nr_pages; } #endif

同時其中調用的__free_pages(page, pageblock_order);最終會調用到__free_one_page(page, zone, order, migratetype);


相關的page會被加到MIGRATE_CMA的free_list上面去:

list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);

?

申請連續內存

申請連續內存仍然使用標準的arch/arm/mm/dma-mapping.c中定義的dma_alloc_coherent()和dma_alloc_writecombine(),這二者會間接調用drivers/base/dma-contiguous.c中的

struct page *dma_alloc_from_contiguous(struct device *dev, int count,unsigned int align)

->

?

struct page *dma_alloc_from_contiguous(struct device *dev, int count,unsigned int align) {...for (;;) {pageno = bitmap_find_next_zero_area(cma->bitmap, cma->count,start, count, mask);if (pageno >= cma->count) {ret = -ENOMEM;goto error;}pfn = cma->base_pfn + pageno;ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA);if (ret == 0) {bitmap_set(cma->bitmap, pageno, count);break;} else if (ret != -EBUSY) {goto error;}pr_debug("%s(): memory range at %p is busy, retrying\n",__func__, pfn_to_page(pfn));/* try again with a bit different memory target */start = pageno + mask + 1;}...}

->

int alloc_contig_range(unsigned long start, unsigned long end,

?????????????????????? unsigned migratetype)



需要隔離page,隔離page的作用通過代碼的注釋可以體現:

/** What we do here is we mark all pageblocks in range as* MIGRATE_ISOLATE. Because of the way page allocator work, we* align the range to MAX_ORDER pages so that page allocator* won't try to merge buddies from different pageblocks and* change MIGRATE_ISOLATE to some other migration type.** Once the pageblocks are marked as MIGRATE_ISOLATE, we* migrate the pages from an unaligned range (ie. pages that* we are interested in). This will put all the pages in* range back to page allocator as MIGRATE_ISOLATE.** When this is done, we take the pages in range from page* allocator removing them from the buddy system. This way* page allocator will never consider using them.** This lets us mark the pageblocks back as* MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the* MAX_ORDER aligned range but not in the unaligned, original* range are put back to page allocator so that buddy can use* them. */ ret = start_isolate_page_range(pfn_align_to_maxpage_down(start),pfn_align_to_maxpage_up(end),migratetype);

簡單地說,就是把相關的page標記為MIGRATE_ISOLATE,這樣buddy系統就不會再使用他們。

?

/* * start_isolate_page_range() -- make page-allocation-type of range of pages* to be MIGRATE_ISOLATE.* @start_pfn: The lower PFN of the range to be isolated.* @end_pfn: The upper PFN of the range to be isolated.* @migratetype: migrate type to set in error recovery.** Making page-allocation-type to be MIGRATE_ISOLATE means free pages in* the range will never be allocated. Any free pages and pages freed in the* future will not be allocated again.** start_pfn/end_pfn must be aligned to pageblock_order.* Returns 0 on success and -EBUSY if any part of range cannot be isolated.*/ int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,unsigned migratetype) {unsigned long pfn;unsigned long undo_pfn;struct page *page;BUG_ON((start_pfn) & (pageblock_nr_pages - 1));BUG_ON((end_pfn) & (pageblock_nr_pages - 1));for (pfn = start_pfn;pfn < end_pfn;pfn += pageblock_nr_pages) {page = __first_valid_page(pfn, pageblock_nr_pages);if (page && set_migratetype_isolate(page)) {undo_pfn = pfn;goto undo;}}return 0; undo:for (pfn = start_pfn;pfn < undo_pfn;pfn += pageblock_nr_pages)unset_migratetype_isolate(pfn_to_page(pfn), migratetype);return -EBUSY; }

接下來調用__alloc_contig_migrate_range()進行頁面隔離和遷移:

static int __alloc_contig_migrate_range(unsigned long start, unsigned long end) {/* This function is based on compact_zone() from compaction.c. */unsigned long pfn = start;unsigned int tries = 0; int ret = 0; struct compact_control cc = {.nr_migratepages = 0, .order = -1,.zone = page_zone(pfn_to_page(start)),.sync = true,}; INIT_LIST_HEAD(&cc.migratepages);migrate_prep_local();while (pfn < end || !list_empty(&cc.migratepages)) {if (fatal_signal_pending(current)) {ret = -EINTR;break;} if (list_empty(&cc.migratepages)) {cc.nr_migratepages = 0; pfn = isolate_migratepages_range(cc.zone, &cc, pfn, end);if (!pfn) {ret = -EINTR;break;} tries = 0; } else if (++tries == 5) { ret = ret < 0 ? ret : -EBUSY;break;} ret = migrate_pages(&cc.migratepages,__alloc_contig_migrate_alloc,0, false, true);} putback_lru_pages(&cc.migratepages);return ret > 0 ? 0 : ret; }

其中的函數migrate_pages()會完成頁面的遷移,遷移過程中通過傳入的__alloc_contig_migrate_alloc()申請新的page,并將老的page付給新的page:

int migrate_pages(struct list_head *from,new_page_t get_new_page, unsigned long private, bool offlining,bool sync) {int retry = 1; int nr_failed = 0; int pass = 0; struct page *page;struct page *page2;int swapwrite = current->flags & PF_SWAPWRITE;int rc;if (!swapwrite)current->flags |= PF_SWAPWRITE;for(pass = 0; pass < 10 && retry; pass++) {retry = 0; list_for_each_entry_safe(page, page2, from, lru) {cond_resched();rc = unmap_and_move(get_new_page, private,page, pass > 2, offlining,sync);switch(rc) {case -ENOMEM:goto out; case -EAGAIN:retry++;break;case 0:break;default:/* Permanent failure */nr_failed++;break;} } } rc = 0; ... }

其中的unmap_and_move()函數較為關鍵,它定義在mm/migrate.c中

/** Obtain the lock on page, remove all ptes and migrate the page* to the newly allocated page in newpage.*/ static int unmap_and_move(new_page_t get_new_page, unsigned long private,struct page *page, int force, bool offlining, bool sync) {int rc = 0;int *result = NULL;struct page *newpage = get_new_page(page, private, &result);int remap_swapcache = 1;int charge = 0;struct mem_cgroup *mem = NULL;struct anon_vma *anon_vma = NULL;.../* charge against new page */charge = mem_cgroup_prepare_migration(page, newpage, &mem);...if (PageWriteback(page)) {if (!force || !sync)goto uncharge;wait_on_page_writeback(page);}/** By try_to_unmap(), page->mapcount goes down to 0 here. In this case,* we cannot notice that anon_vma is freed while we migrates a page.* This get_anon_vma() delays freeing anon_vma pointer until the end* of migration. File cache pages are no problem because of page_lock()* File Caches may use write_page() or lock_page() in migration, then,* just care Anon page here.*/if (PageAnon(page)) {/** Only page_lock_anon_vma() understands the subtleties of* getting a hold on an anon_vma from outside one of its mms.*/anon_vma = page_lock_anon_vma(page);if (anon_vma) {/** Take a reference count on the anon_vma if the* page is mapped so that it is guaranteed to* exist when the page is remapped later*/get_anon_vma(anon_vma);page_unlock_anon_vma(anon_vma);} else if (PageSwapCache(page)) {/** We cannot be sure that the anon_vma of an unmapped* swapcache page is safe to use because we don't* know in advance if the VMA that this page belonged* to still exists. If the VMA and others sharing the* data have been freed, then the anon_vma could* already be invalid.** To avoid this possibility, swapcache pages get* migrated but are not remapped when migration* completes*/remap_swapcache = 0;} else {goto uncharge;}}.../* Establish migration ptes or remove ptes */try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);skip_unmap:if (!page_mapped(page))rc = move_to_new_page(newpage, page, remap_swapcache);if (rc && remap_swapcache)remove_migration_ptes(page, page);/* Drop an anon_vma reference if we took one */if (anon_vma)drop_anon_vma(anon_vma);uncharge:if (!charge)mem_cgroup_end_migration(mem, page, newpage, rc == 0); unlock:unlock_page(page);move_newpage:... }

通過unmap_and_move(),老的page就被遷移過去新的page。

接下來要回收page,回收page的作用是,不至于因為拿了連續的內存后,系統變得內存饑餓:

->

/** Reclaim enough pages to make sure that contiguous allocation* will not starve the system.*/__reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);

->

/** Trigger memory pressure bump to reclaim some pages in order to be able to* allocate 'count' pages in single page units. Does similar work as*__alloc_pages_slowpath() function.*/ static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count) {enum zone_type high_zoneidx = gfp_zone(gfp_mask);struct zonelist *zonelist = node_zonelist(0, gfp_mask);int did_some_progress = 0;int order = 1;unsigned long watermark;/** Increase level of watermarks to force kswapd do his job* to stabilise at new watermark level.*/__update_cma_watermarks(zone, count);/* Obey watermarks as if the page was being allocated */watermark = low_wmark_pages(zone) + count;while (!zone_watermark_ok(zone, 0, watermark, 0, 0)) {wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,NULL);if (!did_some_progress) {/* Exhausted what can be done so it's blamo time */out_of_memory(zonelist, gfp_mask, order, NULL);}}/* Restore original watermark levels. */__update_cma_watermarks(zone, -count);return count; }

?

釋放連續內存

內存釋放的時候也比較簡單,直接就是:

arch/arm/mm/dma-mapping.c:

void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)

->

arch/arm/mm/dma-mapping.c:

static void __free_from_contiguous(struct device *dev, struct page *page,size_t size) {__dma_remap(page, size, pgprot_kernel);dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); }

->

bool dma_release_from_contiguous(struct device *dev, struct page *pages,int count) {...free_contig_range(pfn, count);..}

->


void free_contig_range(unsigned long pfn, unsigned nr_pages) { for (; nr_pages--; ++pfn)__free_page(pfn_to_page(pfn)); }

將page交還給buddy。

?

內核內存分配的migratetype

內核內存分配的時候,帶的標志是GFP_,但是GFP_可以轉化為migratetype:

static inline int allocflags_to_migratetype(gfp_t gfp_flags) {WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);if (unlikely(page_group_by_mobility_disabled))return MIGRATE_UNMOVABLE;/* Group based on mobility */return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |((gfp_flags & __GFP_RECLAIMABLE) != 0); }

之后申請內存的時候,會對比遷移類型匹配的free_list:

page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,preferred_zone, migratetype);

另外,筆者也編寫了一個測試程序,透過它隨時測試CMA的功能:

/** kernel module helper for testing CMA** Licensed under GPLv2 or later.*/#include <linux/module.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/miscdevice.h> #include <linux/dma-mapping.h>#define CMA_NUM 10 static struct device *cma_dev; static dma_addr_t dma_phys[CMA_NUM]; static void *dma_virt[CMA_NUM];/* any read request will free coherent memory, eg.* cat /dev/cma_test*/ static ssize_t cma_test_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) {int i;for (i = 0; i < CMA_NUM; i++) {if (dma_virt[i]) {dma_free_coherent(cma_dev, (i + 1) * SZ_1M, dma_virt[i], dma_phys[i]);_dev_info(cma_dev, "free virt: %p phys: %p\n", dma_virt[i], (void *)dma_phys[i]);dma_virt[i] = NULL;break;}}return 0; }/** any write request will alloc coherent memory, eg.* echo 0 > /dev/cma_test*/ static ssize_t cma_test_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) {int i;int ret;for (i = 0; i < CMA_NUM; i++) {if (!dma_virt[i]) {dma_virt[i] = dma_alloc_coherent(cma_dev, (i + 1) * SZ_1M, &dma_phys[i], GFP_KERNEL);if (dma_virt[i]) {void *p;/* touch every page in the allocated memory */for (p = dma_virt[i]; p < dma_virt[i] + (i + 1) * SZ_1M; p += PAGE_SIZE)*(u32 *)p = 0;_dev_info(cma_dev, "alloc virt: %p phys: %p\n", dma_virt[i], (void *)dma_phys[i]);} else {dev_err(cma_dev, "no mem in CMA area\n");ret = -ENOMEM;}break;}}return count; }static const struct file_operations cma_test_fops = {.owner = THIS_MODULE,.read = cma_test_read,.write = cma_test_write, };static struct miscdevice cma_test_misc = {.name = "cma_test",.fops = &cma_test_fops, };static int __init cma_test_init(void) {int ret = 0;ret = misc_register(&cma_test_misc);if (unlikely(ret)) {pr_err("failed to register cma test misc device!\n");return ret;}cma_dev = cma_test_misc.this_device;cma_dev->coherent_dma_mask = ~0;_dev_info(cma_dev, "registered.\n");return ret; } module_init(cma_test_init);static void __exit cma_test_exit(void) {misc_deregister(&cma_test_misc); } module_exit(cma_test_exit);MODULE_LICENSE("GPL"); MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); MODULE_DESCRIPTION("kernel module to help the test of CMA"); MODULE_ALIAS("CMA test");

申請內存:

# echo 0 > /dev/cma_test

釋放內存:

# cat /dev/cma_test

參考鏈接:

[1] http://www.spinics.net/lists/arm-kernel/msg160854.html

[2] http://www.spinics.net/lists/arm-kernel/msg162063.html

[3] http://lwn.net/Articles/447405/

?

轉載于:https://blog.51cto.com/21cnbao/898846

總結

以上是生活随笔為你收集整理的Linux内核最新的连续内存分配器(CMA)——避免预留大块内存的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。