日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

图解 ElasticSearch 原理,太牛了

發(fā)布時間:2025/3/16 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 图解 ElasticSearch 原理,太牛了 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

作者:Richaaaard

來源:https://www.cnblogs.com/richaaaard/

Elasticsearch 是一款功能強大的開源分布式搜索與數(shù)據(jù)分析引擎,目前國內(nèi)諸多互聯(lián)網(wǎng)大廠都在使用,包括攜程、滴滴、今日頭條、餓了么、360 安全、小米、vivo 等。

除了搜索之外,結(jié)合 Kibana、Logstash、Beats,Elastic Stack 還被廣泛運用在大數(shù)據(jù)實時分析領(lǐng)域,包括日志分析、指標(biāo)監(jiān)控、信息安全等多個領(lǐng)域。

它可以幫助你探索海量結(jié)構(gòu)化、非結(jié)構(gòu)化數(shù)據(jù),按需創(chuàng)建可視化報表,對監(jiān)控數(shù)據(jù)設(shè)置報警閾值,甚至通過使用機器學(xué)習(xí)技術(shù),自動識別異常狀況。

今天,我們先自上而下,后自底向上的介紹ElasticSearch的底層工作原理,并試圖回答以下問題:

  • 為什么我的搜索?*foo-bar*?無法匹配 foo-bar ?

  • 為什么增加更多的文件會壓縮索引(Index)?

  • 為什么 ElasticSearch 占用很多內(nèi)存?

圖解 ElasticSearch

elasticsearch 版本:?elasticsearch-2.2.0。

①云上的集群

如下圖:

②集群里的盒子

云里面的每個白色正方形的盒子代表一個節(jié)點——Node。

③節(jié)點之間

在一個或者多個節(jié)點直接,多個綠色小方塊組合在一起形成一個 ElasticSearch 的索引。

④索引里的小方塊

在一個索引下,分布在多個節(jié)點里的綠色小方塊稱為分片——Shard。

⑤Shard=Lucene Index

一個 ElasticSearch 的 Shard 本質(zhì)上是一個 Lucene Index。

Lucene 是一個 Full Text 搜索庫(也有很多其他形式的搜索庫),ElasticSearch 是建立在 Lucene 之上的。

接下來的故事要說的大部分內(nèi)容實際上是 ElasticSearch 如何基于 Lucene 工作的。

圖解 Lucene

Mini 索引:Segment

在 Lucene 里面有很多小的 Segment,我們可以把它們看成 Lucene 內(nèi)部的 mini-index。

Segment 內(nèi)部

Segment 內(nèi)部有著許多數(shù)據(jù)結(jié)構(gòu),如上圖:

  • Inverted Index

  • Stored Fields

  • Document Values

  • Cache

最最重要的 Inverted Index

如下圖:

Inverted Index 主要包括兩部分:

  • 一個有序的數(shù)據(jù)字典 Dictionary(包括單詞 Term 和它出現(xiàn)的頻率)。

  • 與單詞 Term 對應(yīng)的 Postings(即存在這個單詞的文件)。

當(dāng)我們搜索的時候,首先將搜索的內(nèi)容分解,然后在字典里找到對應(yīng) Term,從而查找到與搜索相關(guān)的文件內(nèi)容。

①查詢“the fury”

如下圖:

②自動補全(AutoCompletion-Prefix)

如果想要查找以字母“c”開頭的字母,可以簡單的通過二分查找(Binary Search)在 Inverted Index 表中找到例如“choice”、“coming”這樣的詞(Term)。

③昂貴的查找

如果想要查找所有包含“our”字母的單詞,那么系統(tǒng)會掃描整個 Inverted Index,這是非常昂貴的。

在此種情況下,如果想要做優(yōu)化,那么我們面對的問題是如何生成合適的 Term。


④問題的轉(zhuǎn)化

如下圖:

對于以上諸如此類的問題,我們可能會有幾種可行的解決方案:

  • * suffix→xiffus *,如果我們想以后綴作為搜索條件,可以為 Term 做反向處理。

  • (60.6384, 6.5017)→ u4u8gyykk,對于 GEO 位置信息,可以將它轉(zhuǎn)換為 GEO Hash。

  • 123→{1-hundreds, 12-tens, 123},對于簡單的數(shù)字,可以為它生成多重形式的 Term。

⑤解決拼寫錯誤

一個 Python 庫為單詞生成了一個包含錯誤拼寫信息的樹形狀態(tài)機,解決拼寫錯誤的問題。

⑥Stored Field 字段查找


當(dāng)我們想要查找包含某個特定標(biāo)題內(nèi)容的文件時,Inverted Index 就不能很好的解決這個問題,所以 Lucene 提供了另外一種數(shù)據(jù)結(jié)構(gòu) Stored Fields 來解決這個問題。


本質(zhì)上,Stored Fields 是一個簡單的鍵值對 key-value。默認情況下,ElasticSearch 會存儲整個文件的 JSON source。

⑦Document Values 為了排序,聚合


即使這樣,我們發(fā)現(xiàn)以上結(jié)構(gòu)仍然無法解決諸如:排序、聚合、facet,因為我們可能會要讀取大量不需要的信息。


所以,另一種數(shù)據(jù)結(jié)構(gòu)解決了此種問題:Document Values。這種結(jié)構(gòu)本質(zhì)上就是一個列式的存儲,它高度優(yōu)化了具有相同類型的數(shù)據(jù)的存儲結(jié)構(gòu)。

為了提高效率,ElasticSearch 可以將索引下某一個 Document Value 全部讀取到內(nèi)存中進行操作,這大大提升訪問速度,但是也同時會消耗掉大量的內(nèi)存空間。

總之,這些數(shù)據(jù)結(jié)構(gòu) Inverted Index、Stored Fields、Document Values 及其緩存,都在 segment 內(nèi)部。

搜索發(fā)生時

搜索時,Lucene 會搜索所有的 Segment 然后將每個 Segment 的搜索結(jié)果返回,最后合并呈現(xiàn)給客戶。

Lucene 的一些特性使得這個過程非常重要:

  • Segments 是不可變的(immutable):Delete?當(dāng)刪除發(fā)生時,Lucene 做的只是將其標(biāo)志位置為刪除,但是文件還是會在它原來的地方,不會發(fā)生改變。

    Update?所以對于更新來說,本質(zhì)上它做的工作是:先刪除,然后重新索引(Re-index)。

  • 隨處可見的壓縮:Lucene 非常擅長壓縮數(shù)據(jù),基本上所有教科書上的壓縮方式,都能在 Lucene 中找到。

  • 緩存所有的所有:Lucene 也會將所有的信息做緩存,這大大提高了它的查詢效率。

緩存的故事


當(dāng) ElasticSearch 索引一個文件的時候,會為文件建立相應(yīng)的緩存,并且會定期(每秒)刷新這些數(shù)據(jù),然后這些文件就可以被搜索到。

隨著時間的增加,我們會有很多 Segments,如下圖:

所以 ElasticSearch 會將這些 Segment 合并,在這個過程中,Segment 會最終被刪除掉。

這就是為什么增加文件可能會使索引所占空間變小,它會引起 Merge,從而可能會有更多的壓縮。

舉個栗子

有兩個 Segment 將會 Merge:

這兩個 Segment 最終會被刪除,然后合并成一個新的 Segment,如下圖:

這時這個新的 Segment 在緩存中處于 Cold 狀態(tài),但是大多數(shù) Segment 仍然保持不變,處于 Warm 狀態(tài)。

以上場景經(jīng)常在 Lucene Index 內(nèi)部發(fā)生的,如下圖:

在 Shard 中搜索


ElasticSearch 從 Shard 中搜索的過程與 Lucene Segment 中搜索的過程類似。

與在 Lucene Segment 中搜索不同的是,Shard 可能是分布在不同 Node 上的,所以在搜索與返回結(jié)果時,所有的信息都會通過網(wǎng)絡(luò)傳輸。

需要注意的是:1 次搜索查找 2 個 Shard=2 次分別搜索 Shard。

對于日志文件的處理:當(dāng)我們想搜索特定日期產(chǎn)生的日志時,通過根據(jù)時間戳對日志文件進行分塊與索引,會極大提高搜索效率。


當(dāng)我們想要刪除舊的數(shù)據(jù)時也非常方便,只需刪除老的索引即可。

在上種情況下,每個 Index 有兩個 Shards。

如何 Scale

如下圖:

Shard 不會進行更進一步的拆分,但是 Shard 可能會被轉(zhuǎn)移到不同節(jié)點上。

所以,如果當(dāng)集群節(jié)點壓力增長到一定的程度,我們可能會考慮增加新的節(jié)點,這就會要求我們對所有數(shù)據(jù)進行重新索引,這是我們不太希望看到的。

所以我們需要在規(guī)劃的時候就考慮清楚,如何去平衡足夠多的節(jié)點與不足節(jié)點之間的關(guān)系。

節(jié)點分配與 Shard 優(yōu)化:

  • 為更重要的數(shù)據(jù)索引節(jié)點,分配性能更好的機器。

  • 確保每個 Shard 都有副本信息 Replica。

路由 Routing:每個節(jié)點,每個都存留一份路由表,所以當(dāng)請求到任何一個節(jié)點時,ElasticSearch 都有能力將請求轉(zhuǎn)發(fā)到期望節(jié)點的 Shard 進一步處理。

一個真實的請求

如下圖:

①Q(mào)uery


如下圖:

Query 有一個類型 filtered,以及一個 multi_match 的查詢。


②Aggregation


如下圖:

根據(jù)作者進行聚合,得到 top10 的 hits 的 top10 作者的信息。


③請求分發(fā)


這個請求可能被分發(fā)到集群里的任意一個節(jié)點,如下圖:

④上帝節(jié)點

如下圖:

這時這個節(jié)點就成為當(dāng)前請求的協(xié)調(diào)者(Coordinator),它決定:

  • 根據(jù)索引信息,判斷請求會被路由到哪個核心節(jié)點。

  • 以及哪個副本是可用的。

  • 等等。

⑤路由

如下圖:

⑥在真實搜索之前


ElasticSearch 會將 Query 轉(zhuǎn)換成 Lucene Query,如下圖:

然后在所有的 Segment 中執(zhí)行計算,如下圖:

對于 Filter 條件本身也會有緩存,如下圖:

但 Queries 不會被緩存,所以如果相同的 Query 重復(fù)執(zhí)行,應(yīng)用程序自己需要做緩存。

所以:

  • Filters 可以在任何時候使用。

  • Query 只有在需要 Score 的時候才使用。

⑦返回


搜索結(jié)束之后,結(jié)果會沿著下行的路徑向上逐層返回,如下圖:

- EOF -

想要加入中生代架構(gòu)群的小伙伴,請?zhí)砑尤汉匣锶?strong>大白的微信

申請備注(姓名+公司+技術(shù)方向)才能通過哦!

阿里技術(shù)精彩文章推薦

往期推薦

深度:揭秘阿里巴巴的客群畫像

多隆:從工程師到阿里巴巴合伙人

阿里技術(shù)專家楚衡:架構(gòu)制圖的工具與方法論

螞蟻集團技術(shù)專家山丘:性能優(yōu)化常見壓測模型及優(yōu)缺點

阿里文娛技術(shù)專家戰(zhàn)獒: 領(lǐng)域驅(qū)動設(shè)計詳解之What, Why, How?

阿里專家馬飛翔:一文讀懂架構(gòu)整潔之道

阿里專家常昊:新人如何上手項目管理?

螞蟻集團沈凋墨:Kubernetes-微內(nèi)核的分布式操作系統(tǒng)

阿里合伙人范禹:常掛在阿里技術(shù)人嘴邊的四句土話

阿里技術(shù)專家都鐸:一文搞懂技術(shù)債

支付寶研究員兼OceanBase總架構(gòu)師楊傳輝:我在數(shù)據(jù)庫夢之隊的十年成長路

阿里技術(shù)專家麒燁:修煉測試基本功

阿里計算平臺掌門人賈揚清:我對人工智能方向的一點淺見

螞蟻資深算法專家周俊:從原理到落地,支付寶如何打造保護隱私的共享智能?

阿里高級技術(shù)專家簫逸:如何畫好一張架構(gòu)圖?

阿里高級技術(shù)專家張建飛:應(yīng)用架構(gòu)分離業(yè)務(wù)邏輯和技術(shù)細節(jié)之道

螞蟻科技 Service Mesh 落地實踐與挑戰(zhàn) | GIAC 實錄

阿里6年,我的技術(shù)蛻變之路!

螞蟻集團涵暢:再啟程,Service Mesh 前路雖長,尤可期許

阿里P9專家右軍:大話軟件質(zhì)量穩(wěn)定性

阿里合伙人程立:阿里15年,我撕掉了身上兩個標(biāo)簽

阿里高工流生 | 云原生時代的 DevOps 之道

阿里高級技術(shù)專家邱小俠:微服務(wù)架構(gòu)的理論基礎(chǔ) - 康威定律

阿里P9專家右軍:以終為始的架構(gòu)設(shè)計

阿里P8架構(gòu)師:淘寶技術(shù)架構(gòu)從1.0到4.0的架構(gòu)變遷!12頁PPT詳解

阿里技術(shù):如何畫出一張合格的技術(shù)架構(gòu)圖?

螞蟻資深技術(shù)專家王旭:開源項目是如何讓這個世界更安全的?

阿里資深技術(shù)專家崮德:8 個影響我職業(yè)生涯的重要技能

儒梟:我看技術(shù)人的成長路徑

阿里高級技術(shù)專家宋意:平凡人在阿里十年的成長之旅

阿里技術(shù)專家甘盤:淺談雙十一背后的支付寶LDC架構(gòu)和其CAP分析

阿里技術(shù)專家光錐:億級長連網(wǎng)關(guān)的云原生演進之路

阿里云原生張羽辰:服務(wù)發(fā)現(xiàn)技術(shù)選型那點事兒

螞蟻研究員玉伯:做一個簡單自由有愛的技術(shù)人

? ?END ? ?? #架構(gòu)師必備#點分享點點贊點在看

總結(jié)

以上是生活随笔為你收集整理的图解 ElasticSearch 原理,太牛了的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。