日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

神经网络python识别词语_请教关于python的手写数字识别神经网络问题~~~~

發(fā)布時間:2025/3/15 python 32 豆豆
生活随笔 收集整理的這篇文章主要介紹了 神经网络python识别词语_请教关于python的手写数字识别神经网络问题~~~~ 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

該樓層疑似違規(guī)已被系統(tǒng)折疊?隱藏此樓查看此樓

"""network.py~~~~~~~~~~

A module to implement the stochastic gradient descent learningalgorithm for a feedforward neural network. Gradients are calculatedusing backpropagation. Note that I have focused on making the codesimple, easily readable, and easily modifiable. It is not optimized,and omits many desirable features."""

#### Libraries

# Standard library

import random

# Third-party libraries

import numpy as np

class Network(object):

def __init__(self, sizes): """The list ``sizes`` contains the number of neurons in the respective layers of the network. For example, if the list was [2, 3, 1] then it would be a three-layer network, with the first layer containing 2 neurons, the second layer 3 neurons, and the third layer 1 neuron. The biases and weights for the network are initialized randomly, using a Gaussian distribution with mean 0, and variance 1. Note that the first layer is assumed to be an input layer, and by convention we won't set any biases for those neurons, since biases are only ever used in computing the outputs from later layers.""" self.num_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a)+b) return a def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): """Train the neural network using mini-batch stochastic gradient descent. The ``training_data`` is a list of tuples ``(x, y)`` representing the training inputs and the desired outputs. The other non-optional parameters are self-explanatory. If ``test_data`` is provided then the network will be evaluated against the test data after each epoch, and partial progress printed out. This is useful for tracking progress, but slows things down substantially.""" if test_data: n_test = len(test_data) n = len(training_data) for j in xrange(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print "Epoch {0}: {1} / {2}".format( j, self.evaluate(test_data), n_test) else: print "Epoch {0} complete".format(j) def update_mini_batch(self, mini_batch, eta): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta`` is the learning rate.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backprop(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] def backprop(self, x, y): """Return a tuple ``(nabla_b, nabla_w)`` representing the gradient for the cost function C_x. ``nabla_b`` and ``nabla_w`` are layer-by-layer lists of numpy arrays, similar to ``self.biases`` and ``self.weights``.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z = np.dot(w, activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) # backward pass delta = self.cost_derivative(activations[-1], y) * \ sigmoid_prime(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # Note that the variable l in the loop below is used a little # differently to the notation in Chapter 2 of the book. Here, # l = 1 means the last layer of neurons, l = 2 is the # second-last layer, and so on. It's a renumbering of the # scheme in the book, used here to take advantage of the fact # that Python can use negative indices in lists. for l in xrange(2, self.num_layers): z = zs[-l] sp = sigmoid_prime(z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla_b, nabla_w) def evaluate(self, test_data): """Return the number of test inputs for which the neural network outputs the correct result. Note that the neural network's output is assumed to be the index of whichever neuron in the final layer has the highest activation.""" test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data] return sum(int(x == y) for (x, y) in test_results) def cost_derivative(self, output_activations, y): """Return the vector of partial derivatives \partial C_x / \partial a for the output activations.""" return (output_activations-y)#### Miscellaneous functionsdef sigmoid(z): """The sigmoid function.""" return 1.0/(1.0+np.exp(-z))def sigmoid_prime(z): """Derivative of the sigmoid function.""" return sigmoid(z)*(1-sigmoid(z))

總結(jié)

以上是生活随笔為你收集整理的神经网络python识别词语_请教关于python的手写数字识别神经网络问题~~~~的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 精品中文字幕一区二区三区 | 秋霞7777鲁丝伊人久久影院 | av手机免费观看 | 欧美男女视频 | 十大污网站 | 日日爱666 | 91福利在线观看视频 | 人妻少妇精品一区二区 | 欧美色图亚洲色 | 日本一区三区 | 一起草av在线 | 欧美xx孕妇| 亚洲自拍色图 | 亚洲欧美中文日韩在线 | 黑白配在线观看免费观看 | 欧美另类videossexo高潮 | 日韩免费视频一区二区视频在线观看 | 解开人妻的裙子猛烈进入 | 18禁肉肉无遮挡无码网站 | 国产精品久久久久久免费播放 | 中文字幕人成人乱码亚洲电影 | 国产精品系列在线播放 | 一区在线免费观看 | 日韩色图视频 | 自拍99 | 亚洲av中文无码乱人伦在线观看 | 特级精品毛片免费观看 | 男女黄床上色视频免费的软件 | 国内偷拍第一页 | 法国空姐在线观看完整版 | 啦啦啦av| 亚洲成人xxx| 人妻少妇被粗大爽9797pw | 国产传媒第一页 | 日韩1级片 | 日韩免费高清视频 | 久久久高清视频 | 哺乳援交吃奶在线播放 | 在线播放成人 | 久久国产精品无码网站 | 91精品视频观看 | 国产av一区二区三区精品 | 欧美色图亚洲视频 | 热热99| 成人av网站在线 | 日韩一二区| av这里只有精品 | 免费的黄色一级片 | 请用你的手指扰乱我吧 | 欧美日韩中文在线观看 | 风间ゆみ大战黑人 | 性少妇mdms丰满hdfilm | 亚洲熟妇国产熟妇肥婆 | 国产做a| 草青青视频 | 国产色一区二区 | 黑人与日本少妇高潮 | 4438x全国最大成人 | 超碰导航 | 日韩一级片免费观看 | 午夜影院久久久 | xxxx999| 日韩不卡毛片 | 毛茸茸多毛bbb毛多视频 | 欧美三级中文字幕 | 毛片网站在线看 | 最新中文字幕在线观看 | a∨鲁丝一区鲁丝二区鲁丝三区 | 国产午夜福利视频在线观看 | 男女日批在线观看 | 精品一区二区三区视频 | 男女日批 | 99久久国产视频 | 91精品欧美一区二区三区 | 婷婷六月网| 欧美做爰全过程免费观看 | 女同一区二区三区 | 一区二区日韩av | 欧美三级韩国三级日本三斤在线观看 | 三级全黄做爰在线观看 | 久久久无码一区二区三区 | 18视频在线观看男男 | 国产一级高清视频 | 中文字幕日韩av | 亚洲欧美天堂 | av图区| 国产网站在线看 | 亚洲人人爽 | 国产在线播放一区 | 深夜福利网站 | 亚洲乱亚洲乱 | 人人91| 日本三级吃奶头添泬 | 美女的诞生免费观看在线高清 | 久久精品国产精品亚洲 | 欧美一区二区不卡视频 | 亚洲成a人片77777kkkk | 久久成人在线观看 | 四虎影成人精品a片 |