日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

转载:理解机器学习中的偏差与方差

發布時間:2025/3/15 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 转载:理解机器学习中的偏差与方差 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

學習算法的預測誤差, 或者說泛化誤差(generalization error)可以分解為三個部分: 偏差(bias), 方差(variance) 和噪聲(noise). 在估計學習算法性能的過程中, 我們主要關注偏差與方差. 因為噪聲屬于不可約減的誤差 (irreducible error).

首先拋開機器學習的范疇, 從字面上來看待這兩個詞:

  • 偏差.
    這里的偏指的是 偏離 , 那么它偏離了什么到導致了誤差? 潛意識上, 當談到這個詞時, 我們可能會認為它是偏離了某個潛在的 “標準”, 而這里這個 “標準” 也就是真實情況 (ground truth). 在分類任務中, 這個 “標準” 就是真實標簽 (label)。

    • 方差.

    很多人應該都還記得在統計學中, 一個隨機變量的方差描述的是它的離散程度, 也就是該隨機變量在其期望值附近的 波動程度 . 取自維基百科一般化的方差定義:
    如果 X?X是一個向量其取值范圍在實數空間R n  Rn,并且其每個元素都是一個一維隨機變量,
    那我們就稱 X 為隨機向量。隨機向量的方差是一維隨機變量方差的自然推廣,其定義為E[(X?μ)(X?μ)T],其中μ=E(X), X?T??XT是 X的轉置.

先從下面的靶心圖來對方差與偏差有個直觀的感受, 我對原圖 [^3] 進行了重繪:

假設紅色的靶心區域是學習算法完美的正確預測值, 藍色點為每個數據集所訓練出的模型對樣本的預測值, 當我們從靶心逐漸向外移動時, 預測效果逐漸變差.

很容易看出有兩副圖中藍色點比較集中, 另外兩幅中比較分散, 它們描述的是方差的兩種情況. 比較集中的屬于方差小的, 比較分散的屬于方差大的情況.

再從藍色點與紅色靶心區域的位置關系, 靠近紅色靶心的屬于偏差較小的情況, 遠離靶心的屬于偏差較大的情況.

有了直觀感受以后, 下面來用公式推導泛化誤差與偏差與方差, 噪聲之間的關系.

符號涵義
x測試樣本
D數據集
yDx在數據集中的標記
yx的真實標記
f訓練集 D學得的模型
f(x;D)由訓練集 D學得的模型 f 對 x的預測輸出
fˉ(x)模型 f對 x的 期望預測 輸出

泛化誤差

以回歸任務為例, 學習算法的平方預測誤差期望為:

|Err(x)=E[(y?f(x;D))?2?]?E[(y?f(x;D))2]|

方差

在一個訓練集 D上模型 f 對測試樣本 x 的預測輸出為 f(x;D), 那么學習算法 f 對測試樣本 x的 期望預測 為:

f?ˉ?ˉ?ˉ??(x)=E?D?[f(x;D)]?fˉ(x)=ED[f(x;D)]

上面的期望預測也就是針對 不同 數據集 D, f 對 x的預測值取其期望, 也被叫做 average predicted 1.

使用樣本數相同的不同訓練集產生的方差為:

var(x)=E?D?[(f(x;D)?f?ˉ?ˉ?ˉ??(x))?2?]?var(x)=ED[(f(x;D)?fˉ(x))2]

噪聲

噪聲為真實標記與數據集中的實際標記間的偏差:

??2?=E?D?[(y?D??y)?2?]??2=ED[(yD?y)2]

偏差

期望預測與真實標記的誤差稱為偏差(bias), 為了方便起見, 我們直接取偏差的平方:

bias?2?(x)=(f?ˉ?ˉ?ˉ??(x)?y)?2??bias2(x)=(fˉ(x)?y)2

對算法的期望泛化誤差進行分解:

不要被上面的公式嚇到, 其實不復雜, 在已知結論的情況下, 了解每一項的意義, 就是一個十分簡單的證明題而已, 藍色部分是對上面對應的等價替換, 然后對其展開后, 紅色部分剛好為 0.

對最終的推導結果稍作整理:

至此, 繼續來看一下偏差, 方差與噪聲的含義 [^2].:

偏差.偏差度量了學習算法的期望預測與真實結果的偏離程序, 即 **刻畫了學習算法本身的擬合能力** .方差.方差度量了同樣規模的訓練集的變化所導致的學習性能的變化, 即 **刻畫了數據擾動所造成的影響** .噪聲.噪聲表達了在當前任務上任何學習算法所能達到的期望泛化誤差的下界, 即 **刻畫了學習問題本身的難度** . 巧婦難為無米之炊, 給一堆很差的食材, 要想做出一頓美味, 肯定是很有難度的.

想當然地, 我們希望偏差與方差越小越好, 但實際并非如此. 一般來說, 偏差與方差是有沖突的, 稱為偏差-方差窘境 (bias-variance dilemma).
給定一個學習任務, 在訓練初期, 由于訓練不足, 學習器的擬合能力不夠強, 偏差比較大, 也是由于擬合能力不強, 數據集的擾動也無法使學習器產生顯著變化, 也就是欠擬合的情況;
隨著訓練程度的加深, 學習器的擬合能力逐漸增強, 訓練數據的擾動也能夠漸漸被學習器學到;
充分訓練后, 學習器的擬合能力已非常強, 訓練數據的輕微擾動都會導致學習器發生顯著變化, 當訓練數據自身的、非全局的特性被學習器學到了, 則將發生過擬合[^3].


  • Bias variance tradeoff 公式圖解.
    [^2]:<機器學習>,周志華 ,2.5節偏差與方差.
    [^3]:Understanding the Bias-Variance Tradeoff.
    原文地址:原文 ?
  • 總結

    以上是生活随笔為你收集整理的转载:理解机器学习中的偏差与方差的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 亚洲乱子伦 | 免费不卡av在线 | 日批免费看| 91丨九色丨黑人外教 | 美女视屏 | 色啪网站 | 国产欧美日韩一区二区三区 | 国产精品成人网站 | 一级bbbbbbbbb毛片 | 国产成人精品一区 | 青青操精品 | av午夜激情 | 激情小说欧美色图 | 绯色av蜜臀vs少妇 | 亚洲精品国产精品国自产观看浪潮 | 国产欧美一区二区精品性色 | 欧美精品videos另类 | 欧美性色视频 | 亚洲精品国产福利 | 成人a级网站 | 亚洲图片欧美日韩 | 亚洲av无码专区首页 | 久草视 | 成人综合区 | 免费大片在线观看www | 精品国语对白 | 亚色av| 午夜激情国产 | 婷婷丁香在线 | 张柏芝54张无删码视频 | av免费在线观 | 伊人婷婷综合 | 国产精品午夜电影 | av中出 | 亚洲精品国产精品乱码不99热 | 法国经典free性复古xxxx | 北条麻妃一区二区三区免费 | 精品一卡二卡三卡 | 福利小视频 | 操操操操操操操 | 婷婷色婷婷开心五月四房播播 | 日韩av专区片 | 中文字幕有码在线播放 | 亚洲免费av网站 | 日韩欧美在线一区二区 | 亚洲av无码一区二区乱子仑 | 欧美日本一区二区 | 日韩中文字幕亚洲 | 午夜影院私人 | 永久黄网站色视频免费观看w | 国产成人精品一区二区三区 | 久久777| 成人一级黄色 | 无码人妻丰满熟妇精品 | 婷婷国产在线 | 免费黄色高清视频 | 欧美乱妇在线观看 | 久久久久亚洲av成人无码电影 | 国产91在线视频观看 | 无遮挡在线观看 | 欧美一区二区三区在线看 | www.欧美亚洲 | 人妻天天爽夜夜爽一区二区三区 | 永久免费视频网站直接看 | 丁香花高清在线观看完整动漫 | 亚洲字幕在线观看 | 天堂社区av | 精品视频一区二区在线观看 | 污视频网址 | 葵司一区二区 | 欧美性猛交xxxx黑人猛交 | 日韩精品中文字幕在线观看 | 中文字幕一区二区三区四区不卡 | 欧美成人hd | 亚洲精品影视 | 骚五月| 91成人精品 | 一区av在线 | 欧美一a一片一级一片 | 无码久久精品国产亚洲av影片 | 亚欧视频在线观看 | 亚洲欧美日韩专区 | 中国丰满人妻videoshd | 红桃一区二区三区 | 欧美色图19p | 亚洲作爱视频 | 精品一区二区电影 | 国产a久久| 99精品热视频 | 欧美亚洲一区二区在线观看 | 91av久久久 | 三级免费毛片 | 国产性猛交xx乱 | www.麻豆av.com| 久热国产在线 | 精品综合久久久 | 日韩精品在线不卡 | 手机看片日韩久久 | 久久久久这里只有精品 |