linux如何脚本监控tps,通过shell脚本监控日志切换频率
在數據庫遇到性能問題的時候,可能從io,cpu等角度能夠下手找到性能瓶頸,日志的切換也是影響性能的一個因素,如果日志切換臺頻繁,等待時間就會在日志相關的事件上,從數據庫的角度來說,肯定是io的瓶頸。
可以通過如下的shell腳本來得到一個簡單的報告。
腳本如下:
sqlplus -s $DB_CONN_STR@$SH_DB_SID<
set linesize ? ?150
set pages ? ? ? 100
set feedback ? ?off
set verify ? ? ?off
col dbname ? ? ?new_value dbname
col time_stamp ?new_value time_stamp
col timestamp_np ? ? ? ?noprint
col year_np ? ? ? ? ? ? noprint
col month_np ? ? ? ? ? ?noprint
col mon ? ? ? ? ? ? ? ? for a3
col day ? ? ? ? ? ? ? ? for a2
ttitle off
SELECT name dbname, substr(to_char(sysdate,'YYYY-Mon-DD HH24:MI:SS'),1,20)
time_stamp
FROM v\$database
/
col bytes format 9,999,999,999,999
col member format a60
select group#,thread#,sequence#,members,bytes/1024/1024 size_MB,archived,status
from v\$log order by 1,2;
ttitle left "Redo Switch times per hour" center "&dbname" right "&time_stamp"
set term on
col tps00 for 999 head "00"
col tps01 for 999 head "01"
col tps02 for 999 head "02"
col tps03 for 999 head "03"
col tps04 for 999 head "04"
col tps05 for 999 head "05"
col tps06 for 999 head "06"
col tps07 for 999 head "07"
col tps08 for 999 head "08"
col tps09 for 999 head "09"
col tps10 for 999 head "10"
col tps11 for 999 head "11"
col tps12 for 999 head "12"
col tps13 for 999 head "13"
col tps14 for 999 head "14"
col tps15 for 999 head "15"
col tps16 for 999 head "16"
col tps17 for 999 head "17"
col tps18 for 999 head "18"
col tps19 for 999 head "19"
col tps20 for 999 head "20"
col tps21 for 999 head "21"
col tps22 for 999 head "22"
col tps23 for 999 head "23"
SELECT *
FROM
( SELECT substr(year_np,1,8) ?timestamp_np,
substr(year_np,5,2) Mon, substr(year_np,7,2) Day,
sum(decode(substr(year_np,9,2),'00',cnt,0)) ? tps00,
sum(decode(substr(year_np,9,2),'01',cnt,0)) ? tps01,
sum(decode(substr(year_np,9,2),'02',cnt,0)) ? tps02,
sum(decode(substr(year_np,9,2),'03',cnt,0)) ? tps03,
sum(decode(substr(year_np,9,2),'04',cnt,0)) ? tps04,
sum(decode(substr(year_np,9,2),'05',cnt,0)) ? tps05,
sum(decode(substr(year_np,9,2),'06',cnt,0)) ? tps06,
sum(decode(substr(year_np,9,2),'07',cnt,0)) ? tps07,
sum(decode(substr(year_np,9,2),'08',cnt,0)) ? tps08,
sum(decode(substr(year_np,9,2),'09',cnt,0)) ? tps09,
sum(decode(substr(year_np,9,2),'10',cnt,0)) ? tps10,
sum(decode(substr(year_np,9,2),'11',cnt,0)) ? tps11,
sum(decode(substr(year_np,9,2),'12',cnt,0)) ? tps12,
sum(decode(substr(year_np,9,2),'13',cnt,0)) ? tps13,
sum(decode(substr(year_np,9,2),'14',cnt,0)) ? tps14,
sum(decode(substr(year_np,9,2),'15',cnt,0)) ? tps15,
sum(decode(substr(year_np,9,2),'16',cnt,0)) ? tps16,
sum(decode(substr(year_np,9,2),'17',cnt,0)) ? tps17,
sum(decode(substr(year_np,9,2),'18',cnt,0)) ? tps18,
sum(decode(substr(year_np,9,2),'19',cnt,0)) ? tps19,
sum(decode(substr(year_np,9,2),'20',cnt,0)) ? tps20,
sum(decode(substr(year_np,9,3),'21',cnt,0)) ? tps21,
sum(decode(substr(year_np,9,3),'22',cnt,0)) ? tps22,
sum(decode(substr(year_np,9,2),'23',cnt,0)) ? tps23
FROM (SELECT to_char(first_time,'YYYYMMDDHH24') year_np,count(*) cnt
FROM v\$log_history where first_time>sysdate -15
GROUP BY to_char(first_time,'YYYYMMDDHH24')
)
GROUP BY substr(year_np,1,8), substr(year_np,5,2), substr(year_np,7,2)
)
ORDER BY timestamp_np
/
<
exit;
來自 “ ITPUB博客 ” ,鏈接:http://blog.itpub.net/23718752/viewspace-1176479/,如需轉載,請注明出處,否則將追究法律責任。
總結
以上是生活随笔為你收集整理的linux如何脚本监控tps,通过shell脚本监控日志切换频率的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: java 缓冲区溢出_基于数组越界的缓冲
- 下一篇: linux 其他常用命令