日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Adonis结果P值小于0.05,一定代表两组样品物种构成差异显著吗?

發布時間:2025/3/15 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Adonis结果P值小于0.05,一定代表两组样品物种构成差异显著吗? 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

前情回顧

方差分析基本概念:方差分析中的“元”和“因素”是什么?

PERMANOVA原理解釋:這個統計檢驗可用于判斷PCA/PCoA等的分群效果是否顯著!

實戰1:畫一個帶統計檢驗的PCoA分析結果

配對檢驗:畫一個帶統計檢驗的PcOA分析結果 (再進一步,配對比較)

你的adonis用對了嗎?不同因素的順序竟然對結果有很大影響

為PERMANOVA/Adonis分析保駕護航,檢驗數據離散度

非參數檢驗也不是什么都不需要關注,比如上面提到的因素順序和方差加和方式是一個需要注意的點。除此之外,非參數多元方差分析應用時還有下面這些注意事項:

  • PERMANOVA檢驗沒有考慮變量之間的共線性關系,因此也不能夠用于探索這種關系。

  • 嵌套或分層設計 (Nested or hierarchical designs)時需要考慮合適的置換策略。

    需要明確哪些樣品是真正可以交換的 (exchangeable)。

  • PERMANOVA有個假設是balanced designs (不同分組的樣本數相等), 非平衡設計也能處理。

  • 如果不同組的樣品在檢測指標構成的空間的中心點沒有差別,但每個組內檢測指標離散度較大,也會導致獲得顯著性的P值。

    在解釋結果時,需要同時評估數據離散度的影響。

  • vegdist評估數據離散度,再解釋adonis的結果

    前面我們用下面的代碼檢驗了Managment對物種組成差異影響的顯著程度,獲得P-value=0.002 < 0.05,表示管理方式對物種組成有顯著影響。但這一影響是否受到每個分組里面數據離散程度的影響呢?

    library(vegan) data(dune) data(dune.env) # 基于bray-curtis距離進行計算 set.seed(1) dune.div <- adonis2(dune ~ Management, data = dune.env, permutations = 999, method="bray")dune.div## Permutation test for adonis under reduced model ## Terms added sequentially (first to last) ## Permutation: free ## Number of permutations: 999 ## ## adonis2(formula = dune ~ Management, data = dune.env, permutations = 999, method = "bray") ## Df SumOfSqs R2 F Pr(>F) ## Management 3 1.4686 0.34161 2.7672 0.002 ** ## Residual 16 2.8304 0.65839 ## Total 19 4.2990 1.00000 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

    我們還需要利用betadisper評估下每組樣本物種組成的多元一致性 (Multivariate homogeneity of groups dispersions (variances))。如下代碼計算出P=0.168表示不同分組樣品檢測指標的離散度(方差)沒有顯著差異。那么,adonis檢測出的差異就是因為每組數據在空間的中心點不同造成的,進一步說明Management對物種組成有顯著影響。

    # 計算加權bray-curtis距離 dune.dist <- vegdist(dune, method="bray", binary=F)# One measure of multivariate dispersion (variance) for a group of samples # is to calculate the average distance of group members to the group centroid # or spatial median in multivariate space. # To test if the dispersions (variances) of one or more groups are different, # the distances of group members to the group centroid are subject to ANOVA. # This is a multivariate analogue of Levene's test for homogeneity of variances # if the distances between group members and # group centroids is the Euclidean distance. dispersion <- betadisper(dune.dist, group=dune.env$Management) permutest(dispersion)## ## Permutation test for homogeneity of multivariate dispersions ## Permutation: free ## Number of permutations: 999 ## ## Response: Distances ## Df Sum Sq Mean Sq F N.Perm Pr(>F) ## Groups 3 0.13831 0.046104 1.9506 999 0.159 ## Residuals 16 0.37816 0.023635

    從下面的圖上也可以看出,4種管理方式下樣品在空間的中心點相距較遠。(也可以參考前面如何美化這個圖)

    plot(dispersion, hull=FALSE, ellipse=TRUE) ##sd ellipse

    Q: When running adonis (vegan package) I got an r2 = 0.45, andp = 0.001. When I ran the betadisper and ran a subsequent permutation test I got an F = 1 and p = 0.3.

    A: A non-significant result in betadisper is not necessarily related to a significant/non-significant result in adonis. The two tests are testing different hypothesis. The former testshomogeneity of dispersion among groups (regions in your case), which is a condition (assumption) for adonis. The latter tests no difference in ‘location’, that is, tests whether composition among groups is similar or not. You may have the centroids of two groups in NMS at a very similar position in the ordination space, but if theirdispersions are quite different, adonis will give you a significant p-value, thus, the result is heavily influenced not by thedifference in composition between groups but bydifferences in composition within groups (heterogeneous dispersion, and thus a measure of beta diversity). In short, your results are fine, you are meeting the ‘one assumption’ for adonis (homogeneous dispersion) and thus you are certain that results from adonis are ‘real’ and not an artifact of heterogeneous dispersions. For more information you can read Anderson (2006) Biometrics 62(1):245-253 and Anderson (2006) Ecology Letters 9(6):683-693. Hope this helps!

    https://stats.stackexchange.com/questions/212137/betadisper-and-adonis-in-r-am-i-interpreting-my-output-correctly

    數據離散度不同而中心點一致,adonis也可能顯著

    下面我們看一個模擬的例子,模擬出3套群體的物種豐度表,群體1、群體2、群體3的物種空間的中心點一致,而物種豐度的離散度依次變小,PERMANOVA檢驗顯著,betadisper結果也顯著,這時解釋數據時就要小心。這個導致顯著的原因是什么。

    set.seed(1) num <- 30 # 控制每個物種的均值 mean <- seq(10,120,by=10) # 控制離散度 disp <- c(5,50,200)# 模擬3組樣品的數據;直接是轉置后的物種豐度表 sites.a <- as.data.frame(mapply(rnbinom, n=num, size=disp[1], mu=mean)) rownames(sites.a) <- paste('site.a', 1:num, sep=".") colnames(sites.a) <- paste('Species',letters[1:length(mean)], sep=".")sites.b <- as.data.frame(mapply(rnbinom, n=num, size=disp[1:2], mu=mean)) rownames(sites.b) <- paste('site.b', 1:num, sep=".") colnames(sites.b) <- paste('Species',letters[1:length(mean)], sep=".")sites.c <- as.data.frame(mapply(rnbinom, n=num, size=disp, mu=mean)) rownames(sites.c) <- paste('site.c', 1:num, sep=".") colnames(sites.c) <- paste('Species',letters[1:length(mean)], sep=".")otu_table_t <- rbind(sites.a,sites.b,sites.c) otu_table_t[sample(1:90,5),]## Species.a Species.b Species.c Species.d Species.e Species.f Species.g Species.h Species.i Species.j ## site.c.22 13 15 43 29 49 72 24 102 75 96 ## site.a.26 8 23 46 29 25 15 91 49 58 54 ## site.a.13 14 30 47 56 18 77 111 128 90 53 ## site.a.14 5 15 17 56 37 75 81 59 63 58 ## site.b.21 15 24 8 33 28 42 108 74 76 64 ## Species.k Species.l ## site.c.22 139 142 ## site.a.26 87 129 ## site.a.13 33 47 ## site.a.14 164 183 ## site.b.21 52 103

    生成Metadata數據,包含樣品的分組信息。目的就是檢驗不同組的物種構成是否有顯著差異。

    metadata <- data.frame(Sample=rownames(otu_table_t), Group=rep(c("A","B","C"), each=num)) rownames(metadata) <- metadata$Sample metadata[sample(1:90,5),,drop=F]## Sample Group ## site.a.28 site.a.28 A ## site.b.12 site.b.12 B ## site.a.20 site.a.20 A ## site.b.10 site.b.10 B ## site.a.10 site.a.10 A

    PCoA和NMDS分析可視化不同組樣品物種組成的差異度

    統計分析前,先直觀的看一下不同組樣本在物種定義的空間上的分布。

    為什么要畫個圖:參考 - 什么是安斯庫姆四重奏?為什么統計分析之前必須要作圖?

    # 計算加權bray-curtis距離 otu_dist <- vegdist(otu_table_t, method="bray", binary=F)otu_pcoa <- cmdscale(otu_dist, k=3, eig=T)otu_pcoa_points <- as.data.frame(otu_pcoa$points) sum_eig <- sum(otu_pcoa$eig) eig_percent <- round(otu_pcoa$eig/sum_eig*100,1)colnames(otu_pcoa_points) <- paste0("PCoA", 1:3)otu_pcoa_result <- cbind(otu_pcoa_points, metadata)

    從PCoA的結果上來看,A,B,C三個組在第一、第二、第三主坐標軸沒有明顯的區分開。

    library(ggplot2) library(patchwork)ggplot(otu_pcoa_result, aes(x=PCoA1, y=PCoA2, color=Group)) +labs(x=paste("PCoA 1 (", eig_percent[1], "%)", sep=""),y=paste("PCoA 2 (", eig_percent[2], "%)", sep="")) +geom_point(size=4) + stat_ellipse(level=0.9) +theme_classic() + coord_fixed() +ggplot(otu_pcoa_result, aes(x=PCoA1, y=PCoA3, color=Group)) +labs(x=paste("PCoA 1 (", eig_percent[1], "%)", sep=""),y=paste("PCoA 3 (", eig_percent[3], "%)", sep="")) +geom_point(size=4) + stat_ellipse(level=0.9) +theme_classic() + coord_fixed()

    從NMDS結果看,A,B,C三組也區分不開。

    otu_mds <- metaMDS(otu_table_t, k=5) #using all the defaults## Square root transformation ## Wisconsin double standardization ## Run 0 stress 0.1131245 ## Run 1 stress 0.1131233 ## ... New best solution ## ... Procrustes: rmse 0.0003155417 max resid 0.001341899 ## ... Similar to previous best ## Run 2 stress 0.1131243 ## ... Procrustes: rmse 0.0009154324 max resid 0.00352237 ## ... Similar to previous best ## Run 3 stress 0.1131238 ## ... Procrustes: rmse 0.0002307456 max resid 0.001378836 ## ... Similar to previous best ## Run 4 stress 0.1131239 ## ... Procrustes: rmse 0.0002008885 max resid 0.0008441584 ## ... Similar to previous best ## Run 5 stress 0.1131233 ## ... Procrustes: rmse 0.0004594988 max resid 0.00248363 ## ... Similar to previous best ## Run 6 stress 0.1136538 ## Run 7 stress 0.1131231 ## ... New best solution ## ... Procrustes: rmse 6.187922e-05 max resid 0.0002788433 ## ... Similar to previous best ## Run 8 stress 0.1131234 ## ... Procrustes: rmse 0.000457399 max resid 0.002017475 ## ... Similar to previous best ## Run 9 stress 0.1131243 ## ... Procrustes: rmse 0.0003620819 max resid 0.001329571 ## ... Similar to previous best ## Run 10 stress 0.1131235 ## ... Procrustes: rmse 0.0001788438 max resid 0.0008840311 ## ... Similar to previous best ## Run 11 stress 0.1131248 ## ... Procrustes: rmse 0.0004674201 max resid 0.001960981 ## ... Similar to previous best ## Run 12 stress 0.1131231 ## ... New best solution ## ... Procrustes: rmse 0.0003807188 max resid 0.001578129 ## ... Similar to previous best ## Run 13 stress 0.1131238 ## ... Procrustes: rmse 0.0004016239 max resid 0.002178598 ## ... Similar to previous best ## Run 14 stress 0.113123 ## ... New best solution ## ... Procrustes: rmse 0.0001931854 max resid 0.0007886561 ## ... Similar to previous best ## Run 15 stress 0.1176584 ## Run 16 stress 0.1131244 ## ... Procrustes: rmse 0.000621146 max resid 0.002339344 ## ... Similar to previous best ## Run 17 stress 0.1131237 ## ... Procrustes: rmse 0.0004553297 max resid 0.0019548 ## ... Similar to previous best ## Run 18 stress 0.1131236 ## ... Procrustes: rmse 0.000454603 max resid 0.001894929 ## ... Similar to previous best ## Run 19 stress 0.1131241 ## ... Procrustes: rmse 0.0005855289 max resid 0.002455173 ## ... Similar to previous best ## Run 20 stress 0.113124 ## ... Procrustes: rmse 0.0005247607 max resid 0.001899271 ## ... Similar to previous best ## *** Solution reachedotu_mds_scores <- as.data.frame(scores(otu_mds)) otu_mds_scores <- cbind(otu_mds_scores, metadata)library(ggplot2) ggplot(data=otu_mds_scores, aes(x=NMDS1,y=NMDS2,colour=Group)) + geom_point(size=4) + stat_ellipse(level = 0.9) +theme_classic()

    進行Adonis檢驗和數據離散度評估

    adonis結果顯示Pr(>F)<0.05,統計顯著;不同組之間的物種組成存在顯著差異。這與PCoA和NMDS的結果還是有些不一致的。那這個統計差異是怎么來的呢?

    library(vegan) adon.results<-adonis(otu_dist ~ Group, data=metadata, perm=999) print(adon.results)## ## Call: ## adonis(formula = otu_dist ~ Group, data = metadata, permutations = 999) ## ## Permutation: free ## Number of permutations: 999 ## ## Terms added sequentially (first to last) ## ## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) ## Group 2 0.10752 0.053760 2.4707 0.05375 0.001 *** ## Residuals 87 1.89300 0.021759 0.94625 ## Total 89 2.00052 1.00000 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

    betadisper檢驗Pr(>F)<0.05表明不同組的數據在空間分布的離散度顯著不同。這是導致adonis結果顯著的主要原因。不同分組之間物種的構成的顯著不同不是體現在物種空間中心點的變化,而是物種空間離散度的變化。

    mod <- betadisper(otu_dist, metadata$Group) permutest(mod)## ## Permutation test for homogeneity of multivariate dispersions ## Permutation: free ## Number of permutations: 999 ## ## Response: Distances ## Df Sum Sq Mean Sq F N.Perm Pr(>F) ## Groups 2 0.157498 0.078749 80.188 999 0.001 *** ## Residuals 87 0.085439 0.000982 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

    用一組可視化來展示這個差異的成因

    把每組樣本抽提出來,分別繪制下PCoA的樣品分布,可以看出,每組樣品在PCoA定義的空間上中心點是很相近的,而樣品分散程度不同。也就是說分組內樣品的多樣性反應到了不同分組的物種構成差異上了,這個“顯著”的差異是不是我們關注的,需要自己來判斷了。

    # extract the centroids and the site points in multivariate space. centroids<-data.frame(grps=rownames(mod$centroids),data.frame(mod$centroids)) vectors<-data.frame(group=mod$group,data.frame(mod$vectors))# to create the lines from the centroids to each point we will put it in a format that ggplot can handle seg.data<-cbind(vectors[,1:3],centroids[rep(1:nrow(centroids),as.data.frame(table(vectors$group))$Freq),2:3]) names(seg.data)<-c("group","v.PCoA1","v.PCoA2","PCoA1","PCoA2")# create the convex hulls of the outermost points grp1.hull<-seg.data[seg.data$group=="A",1:3][chull(seg.data[seg.data$group=="A",2:3]),] grp2.hull<-seg.data[seg.data$group=="B",1:3][chull(seg.data[seg.data$group=="B",2:3]),] grp3.hull<-seg.data[seg.data$group=="C",1:3][chull(seg.data[seg.data$group=="C",2:3]),] all.hull<-rbind(grp1.hull,grp2.hull,grp3.hull)library(gridExtra)panel.a<-ggplot() +geom_polygon(data=all.hull[all.hull=="A",],aes(x=v.PCoA1,y=v.PCoA2),colour="black",alpha=0,linetype="dashed") +geom_segment(data=seg.data[1:30,],aes(x=v.PCoA1,xend=PCoA1,y=v.PCoA2,yend=PCoA2),alpha=0.30) + geom_point(data=centroids[1,1:3], aes(x=PCoA1,y=PCoA2),size=4,colour="red",shape=16) + geom_point(data=seg.data[1:30,], aes(x=v.PCoA1,y=v.PCoA2),size=2,shape=16) +labs(title="A",x="",y="") +coord_cartesian(xlim = c(-0.2,0.2), ylim = c(-0.25,0.2)) +theme_classic() + theme(legend.position="none")panel.b<-ggplot() + geom_polygon(data=all.hull[all.hull=="B",],aes(x=v.PCoA1,y=v.PCoA2),colour="black",alpha=0,linetype="dashed") +geom_segment(data=seg.data[31:60,],aes(x=v.PCoA1,xend=PCoA1,y=v.PCoA2,yend=PCoA2),alpha=0.30) + geom_point(data=centroids[2,1:3], aes(x=PCoA1,y=PCoA2),size=4,colour="red",shape=17) + geom_point(data=seg.data[31:60,], aes(x=v.PCoA1,y=v.PCoA2),size=2,shape=17) +labs(title="B",x="",y="") +coord_cartesian(xlim = c(-0.2,0.2), ylim = c(-0.25,0.2)) +theme_classic() + theme(legend.position="none")panel.c<-ggplot() + geom_polygon(data=all.hull[all.hull=="C",],aes(x=v.PCoA1,y=v.PCoA2),colour="black",alpha=0,linetype="dashed") +geom_segment(data=seg.data[61:90,],aes(x=v.PCoA1,xend=PCoA1,y=v.PCoA2,yend=PCoA2),alpha=0.30) +geom_point(data=centroids[3,1:3], aes(x=PCoA1,y=PCoA2),size=4,colour="red",shape=15) + geom_point(data=seg.data[61:90,], aes(x=v.PCoA1,y=v.PCoA2),size=2,shape=15) + labs(title="C",x="",y="") +coord_cartesian(xlim = c(-0.2,0.2), ylim = c(-0.25,0.2)) +theme_classic() + theme(legend.position="none")panel.d<-ggplot() + geom_polygon(data=all.hull,aes(x=v.PCoA1,y=v.PCoA2),colour="black",alpha=0,linetype="dashed") +geom_segment(data=seg.data,aes(x=v.PCoA1,xend=PCoA1,y=v.PCoA2,yend=PCoA2),alpha=0.30) + geom_point(data=centroids[,1:3], aes(x=PCoA1,y=PCoA2,shape=grps),size=4,colour="red") + geom_point(data=seg.data, aes(x=v.PCoA1,y=v.PCoA2,shape=group),size=2) + labs(title="All",x="",y="") +coord_cartesian(xlim = c(-0.2,0.2), ylim = c(-0.25,0.2)) +theme_classic() + theme(legend.position="none")grid.arrange(panel.a,panel.b,panel.c,panel.d,nrow=1)

    PERMANOVA的作者對這個問題的看法

    Marti Anderson: “[…] Although there is also no explicit assumption regarding the homogeneity of spread within each group, PERMANOVA, like ANOSIM (Clarke 1993), will be sensitive to differences in spread (variability) among groups. Thus, if a significant difference between groups is detected using PERMANOVA, then this could be due to differences in location, differences in spread, or a combinationof the two. Perhaps the best approach is to perform a separate test for homogeneity (e.g., using the program PERMDISP) including pair-wise comparisons, as well as examining the average within and between-group distances and associated MDS plots. This will help to determine the nature of the difference between any pair of groups, whether it be due to location, spread, or a combination of the two. […]”

    參考

  • https://www.scribbr.com/frequently-asked-questions/one-way-vs-two-way-anova/

  • MANOVA的前提假設 https://www.real-statistics.com/multivariate-statistics/multivariate-analysis-of-variance-manova/manova-assumptions/ ?https://www.statology.org/manova-assumptions/

  • https://statistics.laerd.com/statistical-guides/one-way-anova-statistical-guide.php

  • https://www.yunbios.net/h-nd-570.html

  • https://mp.weixin.qq.com/s/v_k4Yhe9rBWM9y9A3P3wQw

  • https://mp.weixin.qq.com/s?__biz=MzUzMjA4Njc1MA==&mid=2247484678&idx=1&sn=f95418a311e639704e9848545efc7fd7&scene=21#wechat_redirect

  • https://chrischizinski.github.io/rstats/vegan-ggplot2/

  • https://chrischizinski.github.io/rstats/adonis/

  • https://chrischizinski.github.io/rstats/ordisurf/

  • https://www.rdocumentation.org/packages/vegan/versions/1.11-0/topics/adonis

  • https://www.jianshu.com/p/dfa689f7cafd

  • https://stats.stackexchange.com/questions/312302/adonis-in-vegan-order-of-variables-non-nested-with-one-degree-of-freedom-for

  • https://stats.stackexchange.com/questions/188519/adonis-in-vegan-order-of-variables-or-use-of-strata?noredirect=1

  • https://github.com/vegandevs/vegan/issues/229

  • https://stats.stackexchange.com/questions/476256/adonis-vs-adonis2

  • 清晰解釋Type I, Type II, Type III https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/

  • 清晰解釋Type I, Type II, Type III https://stats.stackexchange.com/questions/60362/choice-between-type-i-type-ii-or-type-iii-anova

  • https://thebiobucket.blogspot.com/2011/08/two-way-permanova-adonis-with-custom.html#more

  • adonis的前提條件 https://thebiobucket.blogspot.com/2011/04/assumptions-for-permanova-with-adonis.html#more

  • 作者的論文 https://static1.squarespace.com/static/580e3c475016e191c523a0e2/t/5813ba8b5016e1a5b61f454a/1477687949842/Anderson_et_al-2013-ANOSIM+vs.+PERMANOVA.pdf

  • 離散度 adonis https://chrischizinski.github.io/rstats/adonis/

  • 往期精品(點擊圖片直達文字對應教程)

    機器學習

    后臺回復“生信寶典福利第一波”或點擊閱讀原文獲取教程合集

    創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎

    總結

    以上是生活随笔為你收集整理的Adonis结果P值小于0.05,一定代表两组样品物种构成差异显著吗?的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 日日夜夜国产 | 日韩欧美国产成人 | 日韩资源在线观看 | 国内外成人免费视频 | 亚洲交性网 | 国产露脸150部国语对白 | 边打电话边做 | 欧美xxxx黑人又粗又长密月 | 91麻豆网站 | 性生活免费网站 | 五月婷婷六月香 | 欧美爱爱免费视频 | 国产一区二区在线免费 | 午夜免费激情视频 | 极品超粉嫩尤物69xx | 91打屁股| 久草福利资源站 | 台湾一级视频 | 久久999| 国产主播第一页 | 又黄又爽一区二区三区 | 午夜精品久久久久久久99老熟妇 | 国产最新毛片 | 少妇导航av| 99er这里只有精品 | 成人午夜激情网 | 欧美视频你懂的 | 亚欧美视频 | 麻豆网址 | 黄色生活毛片 | 无码精品人妻一二三区红粉影视 | 九色porny视频 | 免费av手机在线观看 | 国产精品国产精品国产 | 青青青手机视频在线观看 | 九九少妇 | 欧美性做爰大片免费 | 亚州中文字幕 | 久久久久在线观看 | 国产精品19乱码一区二区三区 | 亚洲最大的成人网站 | 久久久久综合 | 亚洲色图17p| 精品国产一区一区二区三亚瑟 | www.69av.com| 最新日韩一区 | 最新一区二区三区 | 日本午夜一级 | 亚洲永久精品一区二区 | 91精品网站 | 91精品国产综合久久国产大片 | 免费看欧美黑人毛片 | 亚洲国产精品久久久久久久 | 玩弄白嫩少妇xxxxx性 | 操久久| 谁有毛片网站 | 夜色成人 | 精品欧美一区二区三区免费观看 | 欧美极品一区 | 亚洲色图25p | 中文字幕一区二区三区人妻电影 | 北岛玲一区二区 | 精国产人伦一区二区三区 | 熟女人妇 成熟妇女系列视频 | 538在线精品 | 国产剧情一区二区三区 | 欧美a∨亚洲欧美亚洲 | 加勒比成人在线 | 亚洲成人一区在线观看 | 人妻互换一区二区三区四区五区 | 国产黄色91| 国产精品久久久久久久9999 | 四虎4hu永久免费网站影院 | 国产一区欧美日韩 | 土耳其xxxx性hd极品 | 亚洲91色 | 人人看人人看 | 日韩在线一区二区三区四区 | 天天激情站 | 黄色av片三级三级三级免费看 | av网站在线免费 | 国产麻豆精品在线观看 | 精东影业一区二区三区 | 免费黄色的网站 | 日韩中文免费 | 青青伊人久久 | 好屌妞视频这里只有精品 | 在线观看国产三级 | 国产乱强伦一区二区三区 | 欧美日韩123 | 欧美大尺度床戏做爰 | 日韩精品在线观看一区二区 | 国产精品亚洲欧美在线播放 | 水蜜桃av无码 | 成人黄色激情 | 国产91一区二区三区在线精品 | 国产日韩免费视频 | 日本人妻不卡一区二区三区中文字幕 | 仙踪林久久久久久久999 |