李沐《动手学深度学习》PyTorch 实现版开源,瞬间登上 GitHub 热榜!
點擊上方“AI有道”,選擇“星標”公眾號
重磅干貨,第一時間送達
李沐,亞馬遜 AI 主任科學家,名聲在外!半年前,由李沐、Aston Zhang 等人合力打造的《動手學深度學習》正式上線,免費供大家閱讀。這是一本面向中文讀者的能運行、可討論的深度學習教科書!
之前,紅色石頭就分享過這份資源,再次附上:
在線預覽地址:
https://zh.d2l.ai/
GitHub 項目地址:
https://github.com/d2l-ai/d2l-zh
課程視頻地址:
https://space.bilibili.com/209599371/channel/detail?cid=23541
我們知道,作為 MXNet 的作者之一,李沐的這本《動手學深度學習》也是使用 MXNet 框架寫成的。但是很多入坑機器學習的萌新們使用的卻是 PyTorch。如果有教材對應的 PyTorch 實現代碼就更好了!
撒花!今天就給大家帶來這本書的 PyTorch 實現源碼。最近,來自印度理工學院的數據科學小組,把《動手學深度學習》從 MXNet “翻譯”成了 PyTorch,經過 3 個月的努力,這個項目已經基本完成,并登上了 GitHub 熱榜。
首先放上這份資源的 GitHub 地址:
https://github.com/dsgiitr/d2l-pytorch
詳細目錄如下:
Ch02 Installation
Installation
Ch03 Introduction
Introduction
Ch04 The Preliminaries: A Crashcourse
4.1?Data Manipulation
4.2?Linear Algebra
4.3?Automatic Differentiation
4.4?Probability and Statistics
4.5?Naive Bayes Classification
4.6?Documentation
Ch05 Linear Neural Networks
5.1?Linear Regression
5.2?Linear Regression Implementation from Scratch
5.3?Concise Implementation of Linear Regression
5.4?Softmax Regression
5.5?Image Classification Data (Fashion-MNIST)
5.6?Implementation of Softmax Regression from Scratch
5.7?Concise Implementation of Softmax Regression
Ch06 Multilayer Perceptrons
6.1?Multilayer Perceptron
6.2?Implementation of Multilayer Perceptron from Scratch
6.3?Concise Implementation of Multilayer Perceptron
6.4?Model Selection Underfitting and Overfitting
6.5?Weight Decay
6.6?Dropout
6.7?Forward Propagation Backward Propagation and Computational Graphs
6.8?Numerical Stability and Initialization
6.9?Considering the Environment
6.10?Predicting House Prices on Kaggle
Ch07 Deep Learning Computation
7.1?Layers and Blocks
7.2?Parameter Management
7.3?Deferred Initialization
7.4?Custom Layers
7.5?File I/O
7.6?GPUs
Ch08 Convolutional Neural Networks
8.1?From Dense Layers to Convolutions
8.2?Convolutions for Images
8.3?Padding and Stride
8.4?Multiple Input and Output Channels
8.5?Pooling
8.6?Convolutional Neural Networks (LeNet)
Ch09 Modern Convolutional Networks
9.1?Deep Convolutional Neural Networks (AlexNet)
9.2?Networks Using Blocks (VGG)
9.3?Network in Network (NiN)
9.4?Networks with Parallel Concatenations (GoogLeNet)
9.5?Batch Normalization
9.6?Residual Networks (ResNet)
9.7?Densely Connected Networks (DenseNet)
Ch10 Recurrent Neural Networks
10.1?Sequence Models
10.2?Language Models
10.3?Recurrent Neural Networks
10.4?Text Preprocessing
10.5?Implementation of Recurrent Neural Networks from Scratch
10.6?Concise Implementation of Recurrent Neural Networks
10.7?Backpropagation Through Time
10.8?Gated Recurrent Units (GRU)
10.9?Long Short Term Memory (LSTM)
10.10?Deep Recurrent Neural Networks
10.11 Bidirectional Recurrent Neural Networks
10.12?Machine Translation and DataSets
10.13?Encoder-Decoder Architecture
10.14?Sequence to Sequence
10.15?Beam Search
Ch11 Attention Mechanism
11.1?Attention Mechanism
11.2 Sequence to Sequence with Attention Mechanism
11.3 Transformer
Ch12 Optimization Algorithms
12.1?Optimization and Deep Learning
12.2?Convexity
12.3?Gradient Descent
12.4?Stochastic Gradient Descent
12.5?Mini-batch Stochastic Gradient Descent
12.6?Momentum
12.7 Adagrad
12.8?RMSProp
12.9 Adadelta
12.10 Adam
其中,每一小節都是可以運行的 Jupyter 記事本,你可以自由修改代碼和超參數來獲取及時反饋,從而積累深度學習的實戰經驗。
目前,PyTorch 代碼還有 6 個小節沒有完成,但整體的完成度已經很高了!開發團隊希望更多的愛好者加入進來,貢獻一份力量!
最后,再次附上 GitHub 地址:
https://github.com/dsgiitr/d2l-pytorch
推薦閱讀
(點擊標題可跳轉閱讀)
完備的 AI 學習路線,最詳細的資源整理!
干貨 | 公眾號歷史文章精選
我的深度學習入門路線
我的機器學習入門路線圖
重磅!AI 有道學術交流群成立啦
掃描下方二維碼,添加?AI有道小助手微信,可申請入林軒田機器學習群(數字?1)、吳恩達 deeplearning.ai 學習群(數字?2)。一定要備注:入哪個群(1 或 2 或 1+2)+ 地點 + 學校/公司 + 昵稱。例如:1+上海+復旦+小牛。?
長按掃碼,申請入群
(添加人數較多,請耐心等待)
?
最新 AI 干貨,我在看?
總結
以上是生活随笔為你收集整理的李沐《动手学深度学习》PyTorch 实现版开源,瞬间登上 GitHub 热榜!的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 撒花!PyTorch 官方教程中文版正式
- 下一篇: 梳理百年深度学习发展史-七月在线机器学习