Spark算子:RDD基本转换操作–coalesce、repartition
生活随笔
收集整理的這篇文章主要介紹了
Spark算子:RDD基本转换操作–coalesce、repartition
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
1. coalesce
def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null): RDD[T]該函數用于將RDD進行重分區,使用HashPartitioner。第一個參數為重分區的數目,第二個為是否進行shuffle,默認為false.
代碼測試如下:
scala> var data = sc.textFile("example.txt") data: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[53] at textFile at :21scala> data.collect res1: Array[String] = Array(hello world, hello spark, hello hive, hi spark)scala> data.partitions.size res2: Int = 2 //RDD data默認有兩個分區scala> var rdd1 = data.coalesce(1) rdd1: org.apache.spark.rdd.RDD[String] = CoalescedRDD[2] at coalesce at :23scala> rdd1.partitions.size res3: Int = 1 //rdd1的分區數為1scala> var rdd1 = data.coalesce(4) rdd1: org.apache.spark.rdd.RDD[String] = CoalescedRDD[3] at coalesce at :23scala> rdd1.partitions.size res4: Int = 2 //如果重分區的數目大于原來的分區數,那么必須指定shuffle參數為true,否則,分區數不變scala> var rdd1 = data.coalesce(4,true) rdd1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[7] at coalesce at :23scala> rdd1.partitions.size res5: Int = 42.?repartition
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]該函數其實就是coalesce函數第二個參數為true的實現
代碼測試如下:
scala> var rdd2 = data.repartition(1) rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[11] at repartition at :23scala> rdd2.partitions.size res6: Int = 1scala> var rdd2 = data.repartition(4) rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[15] at repartition at :23scala> rdd2.partitions.size res7: Int = 4?
與50位技術專家面對面20年技術見證,附贈技術全景圖總結
以上是生活随笔為你收集整理的Spark算子:RDD基本转换操作–coalesce、repartition的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 酷站大全
- 下一篇: Golang + Goland环境配置