日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

20210620 Successive projection algorithm(连续投影法)

發(fā)布時間:2025/3/15 编程问答 13 豆豆
生活随笔 收集整理的這篇文章主要介紹了 20210620 Successive projection algorithm(连续投影法) 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

https://en.wikipedia.org/wiki/Projections_onto_convex_sets


Algorithm
The POCS algorithm solves the following problem:
find x∈Rnx \in \mathbb{R}^{n} \quadxRn such that x∈C∩Dx \in C \cap DxCD
where CCC and DDD are closed convex sets.
To use the POCS algorithm, one must know how to project onto the sets CCC and DDD separately. The algorithm starts with an arbitrary value for x0x_{0}x0? and then generates the sequence
xk+1=PC(PD(xk))x_{k+1}=\mathcal{P}_{C}\left(\mathcal{P}_{D}\left(x_{k}\right)\right) xk+1?=PC?(PD?(xk?))
The simplicity of the algorithm explains some of its popularity. If the intersection of CCC and DDD is non-empty, then the sequence generated by the algorithm will converge to some point in this intersection.
Unlike Dykstra’s projection algorithm, the solution need not be a projection onto the intersection CCC and DDD.


Related algorithms
The method of averaged projections is quite similar. For the case of two closed convex sets CCC and DDD, it proceeds by
xk+1=12(PC(xk)+PD(xk))x_{k+1}=\frac{1}{2}\left(\mathcal{P}_{C}\left(x_{k}\right)+\mathcal{P}_{D}\left(x_{k}\right)\right) xk+1?=21?(PC?(xk?)+PD?(xk?))
It has long been known to converge globally. [8]{ }^{[8]}[8] Furthermore, the method is easy to generalize to more than two sets; some convergence results for this case are in. [9]^{[9]}[9]

The averaged projections method can be reformulated as alternating projections method using a standard trick. Consider the set
E={(x,y):x∈C,y∈D}E=\{(x, y): x \in C, y \in D\} E={(x,y):xC,yD}
which is defined in the product space Rn×Rn\mathbb{R}^{n} \times \mathbb{R}^{n}Rn×Rn. Then define another set, also in the product
space:
F={(x,y):x∈Rn,y∈Rn,x=y}.F=\left\{(x, y): x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, x=y\right\} . F={(x,y):xRn,yRn,x=y}.
Thus finding C∩DC \cap DCD is equivalent to finding E∩FE \cap FEF.

To find a point in E∩FE \cap FEF, use the alternating projection method. The projection of a vector (x,y)(x, y)(x,y) onto the set FFF is given by (x+y,x+y)/2(x+y, x+y) / 2(x+y,x+y)/2. Hence
(xk+1,yk+1)=PF(PE((xk,yk)))=PF((PCxk,PDyk))=12(PC(xk)+PD(yk),(PC(xk)+PD(yk))\left(x_{k+1}, y_{k+1}\right)=\mathcal{P}_{F}\left(\mathcal{P}_{E}\left(\left(x_{k}, y_{k}\right)\right)\right)=\mathcal{P}_{F}\left(\left(\mathcal{P}_{C} x_{k}, \mathcal{P}_{D} y_{k}\right)\right)=\frac{1}{2}\left(\mathcal{P}_{C}\left(x_{k}\right)+\mathcal{P}_{D}\left(y_{k}\right),\left(\mathcal{P}_{C}\left(x_{k}\right)+\mathcal{P}_{D}\left(y_{k}\right)\right)\right. (xk+1?,yk+1?)=PF?(PE?((xk?,yk?)))=PF?((PC?xk?,PD?yk?))=21?(PC?(xk?)+PD?(yk?),(PC?(xk?)+PD?(yk?))

Since xk+1=yk+1x_{k+1}=y_{k+1}xk+1?=yk+1? and assuming x0=y0x_{0}=y_{0}x0?=y0?, then xj=yjx_{j}=y_{j}xj?=yj? for all j≥0j \geq 0j0, and hence we can simplify the iteration to xk+1=12(PC(xk)+PD(xk))x_{k+1}=\frac{1}{2}\left(\mathcal{P}_{C}\left(x_{k}\right)+\mathcal{P}_{D}\left(x_{k}\right)\right)xk+1?=21?(PC?(xk?)+PD?(xk?)).

總結(jié)

以上是生活随笔為你收集整理的20210620 Successive projection algorithm(连续投影法)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。