日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > windows >内容正文

windows

2021-03-30 严反馈系统

發布時間:2025/3/15 windows 18 豆豆
生活随笔 收集整理的這篇文章主要介紹了 2021-03-30 严反馈系统 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

In control theory, dynamical systems are in strict-feedback form when they can be expressed as
{x˙=f0(x)+g0(x)z1z˙1=f1(x,z1)+g1(x,z1)z2z˙2=f2(x,z1,z2)+g2(x,z1,z2)z3?z˙i=fi(x,z1,z2,…,zi?1,zi)+gi(x,z1,z2,…,zi?1,zi)zi+1for?1≤i<k?1?z˙k?1=fk?1(x,z1,z2,…,zk?1)+gk?1(x,z1,z2,…,zk?1)zkz˙k=fk(x,z1,z2,…,zk?1,zk)+gk(x,z1,z2,…,zk?1,zk)u\left\{\begin{array}{l} \dot{\mathbf{x}}=f_{0}(\mathbf{x})+g_{0}(\mathbf{x}) z_{1} \\ \dot{z}_{1}=f_{1}\left(\mathbf{x}, z_{1}\right)+g_{1}\left(\mathbf{x}, z_{1}\right) z_{2} \\ \dot{z}_{2}=f_{2}\left(\mathbf{x}, z_{1}, z_{2}\right)+g_{2}\left(\mathbf{x}, z_{1}, z_{2}\right) z_{3} \\ \vdots \\ \dot{z}_{i}=f_{i}\left(\mathbf{x}, z_{1}, z_{2}, \ldots, z_{i-1}, z_{i}\right)+g_{i}\left(\mathbf{x}, z_{1}, z_{2}, \ldots, z_{i-1}, z_{i}\right) z_{i+1} \quad \text { for } 1 \leq i<k-1 \\ \vdots \\ \dot{z}_{k-1}=f_{k-1}\left(\mathbf{x}, z_{1}, z_{2}, \ldots, z_{k-1}\right)+g_{k-1}\left(\mathbf{x}, z_{1}, z_{2}, \ldots, z_{k-1}\right) z_{k} \\ \dot{z}_{k}=f_{k}\left(\mathbf{x}, z_{1}, z_{2}, \ldots, z_{k-1}, z_{k}\right)+g_{k}\left(\mathbf{x}, z_{1}, z_{2}, \ldots, z_{k-1}, z_{k}\right) u \end{array}\right. ????????????????????????????x˙=f0?(x)+g0?(x)z1?z˙1?=f1?(x,z1?)+g1?(x,z1?)z2?z˙2?=f2?(x,z1?,z2?)+g2?(x,z1?,z2?)z3??z˙i?=fi?(x,z1?,z2?,,zi?1?,zi?)+gi?(x,z1?,z2?,,zi?1?,zi?)zi+1??for?1i<k?1?z˙k?1?=fk?1?(x,z1?,z2?,,zk?1?)+gk?1?(x,z1?,z2?,,zk?1?)zk?z˙k?=fk?(x,z1?,z2?,,zk?1?,zk?)+gk?(x,z1?,z2?,,zk?1?,zk?)u?
where

  • x∈Rn\mathbf{x} \in \mathbb{R}^{n}xRn with n≥1n \geq 1n1
  • z1,z2,…,zi,…,zk?1,zkz_{1}, z_{2}, \ldots, z_{i}, \ldots, z_{k-1}, z_{k}z1?,z2?,,zi?,,zk?1?,zk? are scalars,
  • uuu is a scalar input to the system, - f0,f1,f2,…,fi,…,fk?1,fkf_{0}, f_{1}, f_{2}, \ldots, f_{i}, \ldots, f_{k-1}, f_{k}f0?,f1?,f2?,,fi?,,fk?1?,fk? vanish at the origin (i.e., fi(0,0,…,0)=0)\left.f_{i}(0,0, \ldots, 0)=0\right)fi?(0,0,,0)=0)
  • g1,g2,…,gi,…,gk?1,gkg_{1}, g_{2}, \ldots, g_{i}, \ldots, g_{k-1}, g_{k}g1?,g2?,,gi?,,gk?1?,gk? are nonzero over the domain of interest (i.e., gi(x,z1,…,zk)≠0g_{i}\left(\mathbf{x}, z_{1}, \ldots, z_{k}\right) \neq 0gi?(x,z1?,,zk?)?=0 for 1≤i≤k)\left.1 \leq i \leq k\right)1ik)

Here, strict feedback refers to the fact that the nonlinear functions fif_{i}fi? and gig_{i}gi? in the z˙i\dot{z}_{i}z˙i? equation only depend on states x,z1,…,zix, z_{1}, \ldots, z_{i}x,z1?,,zi? that are fed back to that subsystem. [1]^{[1]}[1] That is, the system has a kind of lower triangular form.

Reference: https://en.wikipedia.org/wiki/Strict-feedback_form

總結

以上是生活随笔為你收集整理的2021-03-30 严反馈系统的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。