机器学习基础6--集群模型和算法
案例:
現(xiàn)在手上有許多的文檔,需要將其按照類型(體育,財經(jīng),科技等)進行分類,也就是對文章進行分組或聚類.
分析:
如果手上有已經(jīng)標(biāo)記過類型的數(shù)據(jù),可以將其作為訓(xùn)練集進行學(xué)習(xí).
那么這是否是一個多元分類問題?
其實是監(jiān)督學(xué)習(xí)問題
現(xiàn)在我們有一堆無標(biāo)簽的文檔,打算推斷出相關(guān)文章的分組向量.
Input:文檔向量
Output:集群標(biāo)簽
這是一個無監(jiān)督學(xué)習(xí)任務(wù).
?
怎樣去定義一個集群:
集群用中心和形狀來定義.
?
以形狀來判斷,上方1號點明顯應(yīng)屬于橢圓形集群.而若是以距離來看,2號點明顯屬于圓形集群.
聚類算法:k-means
k均值算法(k-means):固定k個集群,看每個集群的平均值.只考慮集群中心,以此來將數(shù)據(jù)點分不到不通的集群中.
步驟:
1.初始化集群中心
?
2.把所有數(shù)據(jù)點分給離它最近的集群中心.(沃羅諾伊鑲嵌算法)
3.將聚類中心修改為指定的觀測值的平均值.
4.重復(fù)前面的步驟,直到結(jié)果收斂.
?
其他的例子:
1.圖像分類
2.疾病分類
3.商品分類
4.網(wǎng)頁搜索優(yōu)化
5.房價預(yù)測
6.預(yù)測犯罪率
end
課程:機器學(xué)習(xí)基礎(chǔ):案例研究(華盛頓大學(xué))
視頻鏈接:?https://www.coursera.org/learn/ml-foundations/lecture/EPR3S/clustering-documents-task-overview
week4?Clustering models and algorithms
?
轉(zhuǎn)載于:https://www.cnblogs.com/redheat/p/9287970.html
總結(jié)
以上是生活随笔為你收集整理的机器学习基础6--集群模型和算法的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 决策树(Decision Tree)原理
- 下一篇: 判断数据是否为空