使用Disruptor实现生产者和消费者模型
生活随笔
收集整理的這篇文章主要介紹了
使用Disruptor实现生产者和消费者模型
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
生產(chǎn)者
package cn.lonecloud.procum.disruptor;import cn.lonecloud.procum.Data; import com.lmax.disruptor.RingBuffer;import java.nio.ByteBuffer;/*** @author lonecloud* @version v1.0* @date 下午3:02 2018/5/7*/ public class Producer {//隊列private final RingBuffer<Data> dataRingBuffer;public Producer(RingBuffer<Data> dataRingBuffer) {this.dataRingBuffer = dataRingBuffer;}/*** 插入數(shù)據(jù)* @param s*/public void pushData(String s) {//獲取下一個位置long next = dataRingBuffer.next();try {//獲取容器Data data = dataRingBuffer.get(next);//設置數(shù)據(jù)data.setData(s);} finally {//插入dataRingBuffer.publish(next);}} }消費者
package cn.lonecloud.procum.disruptor;import cn.lonecloud.procum.Data; import com.lmax.disruptor.WorkHandler;/*** @author lonecloud* @version v1.0* @date 下午3:01 2018/5/7*/ public class Customer implements WorkHandler<Data> {@Overridepublic void onEvent(Data data) throws Exception {System.out.println(Thread.currentThread().getName()+"---"+data.getData());} }數(shù)據(jù)工廠
package cn.lonecloud.procum.disruptor;import cn.lonecloud.procum.Data; import com.lmax.disruptor.EventFactory;/*** @author lonecloud* @version v1.0* @date 下午3:02 2018/5/7*/ public class DataFactory implements EventFactory<Data> {@Overridepublic Data newInstance() {return new Data();} }主函數(shù)
package cn.lonecloud.procum.disruptor;import cn.lonecloud.procum.Data; import com.lmax.disruptor.RingBuffer; import com.lmax.disruptor.dsl.Disruptor;import java.util.UUID; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors;/*** @author lonecloud* @version v1.0* @date 下午3:09 2018/5/7*/ public class Main {public static void main(String[] args) throws InterruptedException {//創(chuàng)建線程池ExecutorService service = Executors.newCachedThreadPool();//創(chuàng)建數(shù)據(jù)工廠DataFactory dataFactory = new DataFactory();//設置緩沖區(qū)大小,必須為2的指數(shù),否則會有異常int buffersize = 1024;Disruptor<Data> dataDisruptor = new Disruptor<Data>(dataFactory, buffersize,service);//創(chuàng)建消費者線程dataDisruptor.handleEventsWithWorkerPool(new Customer(),new Customer(),new Customer(),new Customer(),new Customer(),new Customer(),new Customer());//啟動dataDisruptor.start();//獲取其隊列RingBuffer<Data> ringBuffer = dataDisruptor.getRingBuffer();for (int i = 0; i < 100; i++) {//創(chuàng)建生產(chǎn)者Producer producer = new Producer(ringBuffer);//設置內(nèi)容producer.pushData(UUID.randomUUID().toString());//Thread.sleep(1000);}} }其中策略有幾種:
1. BlockingWaitStrategy:阻塞策略,最節(jié)省CPU,但是高并發(fā)條件下性能最糟糕
2 SleepingWaitStrategy:在循環(huán)中無限等待,處理數(shù)據(jù)會產(chǎn)生高延遲,對生產(chǎn)線程影響小,場景:異步日志
3. YieldingWaitStrategy:低延遲場合,使用必須保證剩余的消費者線程的邏輯CPU
4. BusySpinWaitStrategy:消費者線程會盡最大努力瘋狂的監(jiān)控緩沖區(qū)變化。
轉(zhuǎn)載于:https://www.cnblogs.com/lonecloud/p/9002927.html
總結
以上是生活随笔為你收集整理的使用Disruptor实现生产者和消费者模型的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 怎么保护自己不被腾讯元宝生成的不实信息误
- 下一篇: too many connections