日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

机器人学习--感知环境数据集

發(fā)布時(shí)間:2025/3/13 编程问答 20 豆豆
生活随笔 收集整理的這篇文章主要介紹了 机器人学习--感知环境数据集 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

一、Indoor Scene Recognition

http://web.mit.edu/torralba/www/indoor.html

Indoor Scene Recognition
Indoor scene recognition is a challenging open problem in high level vision. Most scene recognition models that work well for outdoor scenes perform poorly in the indoor domain. The main difficulty is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properties, others (e.g., bookstores) are better characterized by the objects they contain. More generally, to address the indoor scenes recognition problem we need a model that can exploit local and global discriminative information.
?
Database

The database contains 67 Indoor categories, and a total of 15620 images. The number of images varies across categories, but there are at least 100 images per category. All images are in jpg format. The images provided here are for research purposes only.
Download (tar file, 2.4 Gbytes)

?
Evaluation

For the results in the paper we use a subset of the dataset that has the same number of training and testing samples per class. The partition that we use is:

  • TrainImages.txt: contains the file names of each training image. Total 67*80 images
  • TestImages.txt: contains the file names of each test image. Total 67*20 images

    ?

Annotations

A subset of the images are segmented and annotated with the objects that they contain. The annotations are in LabelMe format:.
Download annotations

?
Paper
A. Quattoni, and A.Torralba.?Recognizing Indoor Scenes. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
?
Acknowledgments
Thanks to Aude Oliva for helping to create the database of indoor scenes.
Funding for this research was provided by NSF Career award (IIS 0747120)
?
?

?

二、Robot@Home dataset

官網(wǎng):?http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/203-robot-at-home-dataset

論文地址:http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/203-robot-at-home-dataset

?

總結(jié)

以上是生活随笔為你收集整理的机器人学习--感知环境数据集的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。