日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 人工智能 > 循环神经网络 >内容正文

循环神经网络

chimerge算法matlab实现,有监督的卡方分箱算法

發(fā)布時(shí)間:2025/3/12 循环神经网络 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 chimerge算法matlab实现,有监督的卡方分箱算法 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

實(shí)現(xiàn)代碼

import numpy as np

import pandas as pd

from collections import Counter

def chimerge(data, attr, label, max_intervals):

distinct_vals = sorted(set(data[attr])) # Sort the distinct values

labels = sorted(set(data[label])) # Get all possible labels

empty_count = {l: 0 for l in labels} # A helper function for padding the Counter()

intervals = [[distinct_vals[i], distinct_vals[i]] for i in range(len(distinct_vals))] # Initialize the intervals for each attribute

while len(intervals) > max_intervals: # While loop

chi = []

for i in range(len(intervals)-1):

# Calculate the Chi2 value

obs0 = data[data[attr].between(intervals[i][0], intervals[i][1])]

obs1 = data[data[attr].between(intervals[i+1][0], intervals[i+1][1])]

total = len(obs0) + len(obs1)

count_0 = np.array([v for i, v in {**empty_count, **Counter(obs0[label])}.items()])

count_1 = np.array([v for i, v in {**empty_count, **Counter(obs1[label])}.items()])

count_total = count_0 + count_1

expected_0 = count_total*sum(count_0)/total

expected_1 = count_total*sum(count_1)/total

chi_ = (count_0 - expected_0)**2/expected_0 + (count_1 - expected_1)**2/expected_1

chi_ = np.nan_to_num(chi_) # Deal with the zero counts

chi.append(sum(chi_)) # Finally do the summation for Chi2

min_chi = min(chi) # Find the minimal Chi2 for current iteration

for i, v in enumerate(chi):

if v == min_chi:

min_chi_index = i # Find the index of the interval to be merged

break

new_intervals = [] # Prepare for the merged new data array

skip = False

done = False

for i in range(len(intervals)):

if skip:

skip = False

continue

if i == min_chi_index and not done: # Merge the intervals

t = intervals[i] + intervals[i+1]

new_intervals.append([min(t), max(t)])

skip = True

done = True

else:

new_intervals.append(intervals[i])

intervals = new_intervals

for i in intervals:

print(‘[‘, i[0], ‘,‘, i[1], ‘]‘, sep=‘‘)

使用例子

iris = pd.read_csv(‘http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data‘, header=None)

iris.columns = [‘sepal_l‘, ‘sepal_w‘, ‘petal_l‘, ‘petal_w‘, ‘type‘]

for attr in [‘sepal_l‘, ‘sepal_w‘, ‘petal_l‘, ‘petal_w‘]:

print(‘Interval for‘, attr)

chimerge(data=iris, attr=attr, label=‘type‘, max_intervals=3)

結(jié)果:

原文:https://www.cnblogs.com/hichens/p/13585854.html

總結(jié)

以上是生活随笔為你收集整理的chimerge算法matlab实现,有监督的卡方分箱算法的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。