tensorflow-tf.nn.conv2d卷积运算(2)
tf.nn.conv2d(
input,
filter,
strides,
padding,
use_cudnn_on_gpu=True,
data_format=‘NHWC’,
dilations=[1, 1, 1, 1],
name=None
)
計算給定4d輸入和過濾核張量的二維卷積。
給定形狀[batch,in_height, in_width, in_channels]的輸入張量和形狀[filter_height, filter_width, in_channels, out_channels]的篩選/核張量,此op執(zhí)行如下操作:
將過濾核壓扁到一個二維矩陣,形狀為[filter_height filter_width in_channels, output_channels]。
從輸入張量中提取圖像塊,形成一個形狀的虛擬張量[batch, out_height, out_width, filter_height filter_width in_channels]。
對于每個patch,右乘濾波器矩陣和圖像patch向量。
output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]
必須有strides(步長)[0]=strides[3]= 1。對于相同水平和頂點的最常見情況,stride = [1, stride, stride, 1]。
Args:
input:一個張量。必須是以下類型之一:half,bfloat16, float32, float64。一個四維張量。dimension順序是根據(jù)data_format的值來解釋的。
filter: 必須具有與輸入相同的類型。形狀的4維張量[filter_height, filter_width, in_channels, out_channels]。
strides: int型列表。長度為4的一維張量。每個輸入維度的滑動窗口的跨步。順序是根據(jù)data_format的值來解釋的。
padding: 來自:“SAME”、“VALID”的字符串。要使用的填充算法的類型。
use_cudnn_on_gpu: 可選bool,默認為True.
data_format: 一個可選的字符串:“NHWC”、“NCHW”。默認為“NHWC”。指定輸入和輸出數(shù)據(jù)的數(shù)據(jù)格式。使用默認格式“NHWC”,數(shù)據(jù)按以下順序存儲:[批處理、高度、寬度、通道]。或者,格式可以是“NCHW”,數(shù)據(jù)存儲順序為:[批處理,通道,高度,寬度]。
dilations:int的可選列表。默認為[1,1,1,1]。長度為4的一維張量。每個輸入維度的膨脹系數(shù)。如果設置為k > 1,則該維度上的每個過濾器元素之間將有k-1跳過單元格。維度順序由data_format的值決定,詳細信息請參閱上面的內容。批次的膨脹和深度尺寸必須為1。
name: 可選 名字
[[[[ 1. 2.]
[ 3. 4.]
[ 5. 6.]]
[[10. 20.]
[30. 40.]
[50. 60.]]]]
[[[[10.]
[ 2.]]]]
(1, 1, 2, 1)
(1, 2, 3, 2)
[[[[ 14.]
[ 38.]
[ 62.]]
[[140.]
[380.]
[620.]]]]
c shape:
(1, 2, 2, 1)
c value:
[[[[ 4.]
[ 4.]]
[[ 2.]
[ 4.]]]]
d shape:
(1, 3, 3, 1)
d value:
[[[[ 2.]
[ 3.]
[ 1.]]
[[ 1.]
[ 4.]
[ 3.]]
[[ 0.]
[ 2.]
[ 1.]]]]
padding為VALID,采用丟棄的方式。
padding為SAME,采用的是補全的方式,補0
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Oct 2 13:23:27 2018tf.nn.conv2d """import tensorflow as tfg=tf.Graph()with g.as_default():x=tf.constant([[[[1.],[2.],[11.]],[[3.],[4.],[22.]],[[5.],[6.],[33.]]],[[[10.],[20.],[44.]],[[30.],[40.],[55.]],[[50.],[60.],[66.]] ]])#2*3*3*1kernel=tf.constant([[[[2.]],[[3.]]]])#2*2*1y=tf.nn.conv2d(x,kernel,strides=[1,1,1,1],padding="SAME")with tf.Session(graph=g) as sess:print x.get_shape()print kernel.get_shape()print sess.run(y) print y.get_shape()padding=“SAME”
12+23=812+23=812+23=8
22+311=3722+311=3722+311=37
112+03=22112+03=22112+03=22
(2, 3, 3, 1)
(1, 2, 1, 1)
[[[[ 8.]
[ 37.]
[ 22.]]
[[ 18.]
[ 74.]
[ 44.]]
[[ 28.]
[111.]
[ 66.]]]
[[[ 80.]
[172.]
[ 88.]]
[[180.]
[245.]
[110.]]
[[280.]
[318.]
[132.]]]]
(2, 3, 3, 1)
總結
以上是生活随笔為你收集整理的tensorflow-tf.nn.conv2d卷积运算(2)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 干净高效的搜索引擎
- 下一篇: tensorflow-tf.train.