日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > asp.net >内容正文

asp.net

.net随笔-vb.net Accord.Net机器学习之SVM分类

發布時間:2025/3/12 asp.net 15 豆豆
生活随笔 收集整理的這篇文章主要介紹了 .net随笔-vb.net Accord.Net机器学习之SVM分类 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

線性核分類

Imports Accord.ControlsImports Accord.IOImports Accord.MathImports Accord.Statistics.Distributions.UnivariateImports Accord.MachineLearning.VectorMachines.LearningImports Accord.StatisticsImports SystemPublic Class Form1'SVM線性分類'使用Accord.IO里的的excel讀取類Dim table As DataTable = New ExcelReader("E:\pro\books\AI_.net\src\AI_learn\learnai-1\data\examples.xls").GetWorksheet("Classification - Yin Yang")Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.ClickNaiveBayes()End SubPrivate Sub NaiveBayes()'讀取樣本' 轉換datatable為輸入輸出數組Dim sample As Double()() = table.ToJagged(Of Double)("X", "Y")Dim outs As Integer() = table.Columns("G").ToArray(Of Integer)()Dim trainer As New LinearCoordinateDescent()Dim svm = trainer.Learn(sample, outs)Dim predictResult As Boolean() = svm.Decide(sample)Dim zeroOneAnswers As Integer() = predictResult.ToZeroOne()ScatterplotBox.Show("實際結果", sample, outs)ScatterplotBox.Show("SVM預測結果", sample, zeroOneAnswers).Hold()End SubEnd Class

效果如下

非線性高斯核分類

Imports Accord.Controls Imports Accord.IO Imports Accord.Math Imports Accord.Statistics.Distributions.Univariate Imports Accord.MachineLearning.VectorMachines.Learning Imports Accord.Statistics Imports Accord.Statistics.Kernels Imports SystemPublic Class Form1'SVM非線性核'使用Accord.IO里的的excel讀取類Dim table As DataTable = New ExcelReader("E:\pro\books\AI_.net\src\AI_learn\data\examples.xls").GetWorksheet("Classification - Yin Yang")Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.ClickNaiveBayes()End SubPrivate Sub NaiveBayes()'讀取樣本' 轉換datatable為輸入輸出數組Dim sample As Double()() = table.ToJagged(Of Double)("X", "Y")Dim outs As Integer() = table.Columns("G").ToArray(Of Integer)()Dim trainer As New SequentialMinimalOptimization(Of Gaussian)trainer.UseComplexityHeuristic = Truetrainer.UseKernelEstimation = TrueDim svm = trainer.Learn(sample, outs)Dim predictResult As Boolean() = svm.Decide(sample)Dim zeroOneAnswers As Integer() = predictResult.ToZeroOne()ScatterplotBox.Show("實際結果", sample, outs)ScatterplotBox.Show("SVM預測結果", sample, zeroOneAnswers).Hold()End Sub End Class

總結

以上是生活随笔為你收集整理的.net随笔-vb.net Accord.Net机器学习之SVM分类的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。