日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

读书笔记《集体智慧编程》Chapter 2 : Make Recommendations

發(fā)布時間:2025/3/8 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 读书笔记《集体智慧编程》Chapter 2 : Make Recommendations 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
本章概要 本章主要介紹了兩種協(xié)同過濾(Collaborative Filtering)算法,用于個性化推薦:
  • 基于用戶的協(xié)同過濾(User-Based Collaborative Filtering,又稱 K-Nearest Neighbor Collaborative Filtering)
  • 基于條目的協(xié)同過濾(Item-Based Collaborative Filtering)
本章還介紹兩種向量相似性算法:
  • 歐氏距離(Euclidean Distance)
  • 皮爾斯稀疏(Pearson Coefficient)
? 協(xié)同過濾 協(xié)同過濾是在一大群用戶中尋找一些與你的用戶相似的用戶,然后將這些找到的用戶使用過但是你沒有使用過的物品(如電影,書籍,商品)推薦給你的用戶,因為你與這些用戶具有類似的愛好。 相似度算法 歐氏距離是平面幾何距離的n維擴(kuò)展,值越大,越不相似,為了使得當(dāng)距離越大時,越相似,需要對其歐氏距離轉(zhuǎn)換,轉(zhuǎn)換方式如下: euc-dist(x,y) ?===> ? ?1/(1+euc-dist(x,y)) 皮爾斯系數(shù)可以描述兩個向量的相關(guān)性,表示的兩個向量在二維坐標(biāo)上分布為一條直線的程度,值在-1~1之間,越大,越相關(guān)。皮爾斯稀疏可以修復(fù)分?jǐn)?shù)通脹(grade inflation)問題,舉個例子,A,B兩個用戶具有集齊相似的興趣,只是A打分相對較嚴(yán)格,一般比平均分低一分,但是A與B的pearson系數(shù)卻可以完美的為1.這種特性根據(jù)你的應(yīng)用而定,可能會需要,至少在電影推薦的例子上是需要的,但是其他例子里面可能不需要. User-Based Collaborative Filtering (or the K-Nearest Neighbor Collaborative Filtering) 計算你其他人所有人相似度,取前k個。 在k個人中,取出我沒有看過的電影,然后根據(jù)相似度與對應(yīng)用戶對電影的打分成績,作加權(quán)平均值,分值越大,代表我可能越有興趣額。 這是一個通用算法,可以講商品,替換電影打分,那么就可以推斷我可能感興趣的商品。返回來也可以,可以根據(jù)商品推斷潛在購買者。抽象為下面的關(guān)系:
  • 用戶:影評 --> 推薦電影
  • 影評:用戶 --> 預(yù)測其他用戶影評(沒多大意義)
  • 用戶:商品 --> 推薦商品
  • 商品:用戶 --> 潛在購買用戶 ? ?商品之間的關(guān)系相對stable,相比于人之間的關(guān)系
Item-Based Collaborative Filtering(基于條目的系統(tǒng)過濾) 基于用戶的協(xié)同過濾最大的問題在于性能,計算量太大,當(dāng)用戶陡增時無法做到實時推薦。因為每次推薦都要計算k個最近的用戶,開銷很大。
基本條目過濾的思路:計算出條目之間的相似性(相對穩(wěn)定,可以在空閑時間計算),然后將根據(jù)用戶用過的條目和該條目對應(yīng)用戶沒有用過的條目,計算加權(quán)平均值,推薦給用戶。 最大的好處是條目之間的關(guān)系相對穩(wěn)定,可以提前計算。而且條目計算的結(jié)果可以優(yōu)化,只計算每個條目最相似的k個條目,k << n(總體條目數(shù))。 相比于基于用戶的協(xié)同顧慮,它更適合于稀疏矩陣。 基于條目的協(xié)同過濾,可以參見論文《Item-Based Collaborative Filtering Recommendation Algorithms》。 更具此問題,基于條目的協(xié)同過濾比基于用戶的系統(tǒng)過濾更準(zhǔn)確。 聲明:如有轉(zhuǎn)載本博文章,請注明出處。您的支持是我的動力!文章部分內(nèi)容來自互聯(lián)網(wǎng),本人不負(fù)任何法律責(zé)任。 本文轉(zhuǎn)自bourneli博客園博客,原文鏈接:http://www.cnblogs.com/bourneli/archive/2012/11/11/2765325.html,如需轉(zhuǎn)載請自行聯(lián)系原作者

總結(jié)

以上是生活随笔為你收集整理的读书笔记《集体智慧编程》Chapter 2 : Make Recommendations的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。