日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

200行代码实现视频人物实时去除

發(fā)布時(shí)間:2025/3/8 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 200行代码实现视频人物实时去除 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

今天在GitHub上發(fā)現(xiàn)了一個(gè)好玩的代碼,短短幾百行代碼就實(shí)現(xiàn)了從復(fù)雜的背景視頻中去除人物,不得不說這位大佬比較厲害。

這個(gè)項(xiàng)目只需要在網(wǎng)絡(luò)瀏覽器中使用JavaScript,用200多行TensorFlow.js代碼,就可以實(shí)時(shí)讓視頻畫面中的人物對(duì)象從復(fù)雜的背景中憑空消失!

耐不住激動(dòng)就趕快試了一下,雖然沒有官方提供的那么完美,但已經(jīng)很不錯(cuò)了

項(xiàng)目的GitHub地址:https://github.com/jasonmayes/Real-Time-Person-Removal

(一)效果演示

看下官方的演示視頻:

我測(cè)試的:

(二)代碼

GitHub網(wǎng)站最近訪問比較慢,這里我直接放上代碼
index.html

<!DOCTYPE html> <html lang="en"><head><title>Disappearing People Project</title><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1"><meta name="author" content="Jason Mayes"><!-- Import the webpage's stylesheet --><link rel="stylesheet" href="style.css"><!-- Import TensorFlow.js library --><script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js" type="text/javascript"></script></head> <body><h1>Disappearing People Project</h1><header class="note"> <h2>Removing people from complex backgrounds in real time using TensorFlow.js</h2></header><h2>How to use</h2><p>Please wait for the model to load before trying the demos below at which point they will become visible when ready to use.</p><p>Here is a video of what you can expect to achieve using my custom algorithm. The top is the actual footage, the bottom video is with the real time removal of people working in JavaScript!</p><iframe width="540" height="812" src="https://www.youtube.com/embed/0LqEuc32uTc?controls=0&autoplay=1" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe><section id="demos" class="invisible"><h2>Demo: Webcam live removal</h2><p>Try this out using your webcam. Stand a few feet away from your webcam and start walking around... Watch as you slowly disappear in the bottom preview.</p><div id="liveView" class="webcam"><button id="webcamButton">Enable Webcam</button><video id="webcam" autoplay></video></div></section><!-- Include the Glitch button to show what the webpage is about andto make it easier for folks to view source and remix --><div class="glitchButton" style="position:fixed;top:20px;right:20px;"></div><script src="https://button.glitch.me/button.js"></script><!-- Load the bodypix model to recognize body parts in images --><script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/body-pix@2.0"></script><!-- Import the page's JavaScript to do some stuff --><script src="script.js" defer></script></body> </html>

stript.js

/*** @license* Copyright 2018 Google LLC. All Rights Reserved.* Licensed under the Apache License, Version 2.0 (the "License");* you may not use this file except in compliance with the License.* You may obtain a copy of the License at** http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.* =============================================================================*//********************************************************************* Real-Time-Person-Removal Created by Jason Mayes 2020.** Get latest code on my Github:* https://github.com/jasonmayes/Real-Time-Person-Removal** Got questions? Reach out to me on social:* Twitter: @jason_mayes* LinkedIn: https://www.linkedin.com/in/creativetech********************************************************************/const video = document.getElementById('webcam'); const liveView = document.getElementById('liveView'); const demosSection = document.getElementById('demos'); const DEBUG = false;// An object to configure parameters to set for the bodypix model. // See github docs for explanations. const bodyPixProperties = {architecture: 'MobileNetV1',outputStride: 16,multiplier: 0.75,quantBytes: 4 };// An object to configure parameters for detection. I have raised // the segmentation threshold to 90% confidence to reduce the // number of false positives. const segmentationProperties = {flipHorizontal: false,internalResolution: 'high',segmentationThreshold: 0.9 };// Must be even. The size of square we wish to search for body parts. // This is the smallest area that will render/not render depending on // if a body part is found in that square. const SEARCH_RADIUS = 300; const SEARCH_OFFSET = SEARCH_RADIUS / 2;// RESOLUTION_MIN should be smaller than SEARCH RADIUS. About 10x smaller seems to // work well. Effects overlap in search space to clean up body overspill for things // that were not classified as body but infact were. const RESOLUTION_MIN = 20;// Render returned segmentation data to a given canvas context. function processSegmentation(canvas, segmentation) {var ctx = canvas.getContext('2d');// Get data from our overlay canvas which is attempting to estimate background.var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);var data = imageData.data;// Get data from the live webcam view which has all data.var liveData = videoRenderCanvasCtx.getImageData(0, 0, canvas.width, canvas.height);var dataL = liveData.data;// Now loop through and see if pixels contain human parts. If not, update // backgound understanding with new data.for (let x = RESOLUTION_MIN; x < canvas.width; x += RESOLUTION_MIN) {for (let y = RESOLUTION_MIN; y < canvas.height; y += RESOLUTION_MIN) {// Convert xy co-ords to array offset.let n = y * canvas.width + x;let foundBodyPartNearby = false;// Let's check around a given pixel if any other pixels were body like.let yMin = y - SEARCH_OFFSET;yMin = yMin < 0 ? 0: yMin;let yMax = y + SEARCH_OFFSET;yMax = yMax > canvas.height ? canvas.height : yMax;let xMin = x - SEARCH_OFFSET;xMin = xMin < 0 ? 0: xMin;let xMax = x + SEARCH_OFFSET;xMax = xMax > canvas.width ? canvas.width : xMax;for (let i = xMin; i < xMax; i++) {for (let j = yMin; j < yMax; j++) {let offset = j * canvas.width + i;// If any of the pixels in the square we are analysing has a body// part, mark as contaminated.if (segmentation.data[offset] !== 0) {foundBodyPartNearby = true;break;} }}// Update patch if patch was clean. if (!foundBodyPartNearby) {for (let i = xMin; i < xMax; i++) {for (let j = yMin; j < yMax; j++) {// Convert xy co-ords to array offset.let offset = j * canvas.width + i;data[offset * 4] = dataL[offset * 4]; data[offset * 4 + 1] = dataL[offset * 4 + 1];data[offset * 4 + 2] = dataL[offset * 4 + 2];data[offset * 4 + 3] = 255; }}} else {if (DEBUG) {for (let i = xMin; i < xMax; i++) {for (let j = yMin; j < yMax; j++) {// Convert xy co-ords to array offset.let offset = j * canvas.width + i;data[offset * 4] = 255; data[offset * 4 + 1] = 0;data[offset * 4 + 2] = 0;data[offset * 4 + 3] = 255; }} }}}}ctx.putImageData(imageData, 0, 0); }// Let's load the model with our parameters defined above. // Before we can use bodypix class we must wait for it to finish // loading. Machine Learning models can be large and take a moment to // get everything needed to run. var modelHasLoaded = false; var model = undefined;model = bodyPix.load(bodyPixProperties).then(function (loadedModel) {model = loadedModel;modelHasLoaded = true;// Show demo section now model is ready to use.demosSection.classList.remove('invisible'); });/******************************************************************** // Continuously grab image from webcam stream and classify it. ********************************************************************/var previousSegmentationComplete = true;// Check if webcam access is supported. function hasGetUserMedia() {return !!(navigator.mediaDevices &&navigator.mediaDevices.getUserMedia); }// This function will repeatidly call itself when the browser is ready to process // the next frame from webcam. function predictWebcam() {if (previousSegmentationComplete) {// Copy the video frame from webcam to a tempory canvas in memory only (not in the DOM).videoRenderCanvasCtx.drawImage(video, 0, 0);previousSegmentationComplete = false;// Now classify the canvas image we have available.model.segmentPerson(videoRenderCanvas, segmentationProperties).then(function(segmentation) {processSegmentation(webcamCanvas, segmentation);previousSegmentationComplete = true;});}// Call this function again to keep predicting when the browser is ready.window.requestAnimationFrame(predictWebcam); }// Enable the live webcam view and start classification. function enableCam(event) {if (!modelHasLoaded) {return;}// Hide the button.event.target.classList.add('removed'); // getUsermedia parameters.const constraints = {video: true};// Activate the webcam stream.navigator.mediaDevices.getUserMedia(constraints).then(function(stream) {video.addEventListener('loadedmetadata', function() {// Update widths and heights once video is successfully played otherwise// it will have width and height of zero initially causing classification// to fail.webcamCanvas.width = video.videoWidth;webcamCanvas.height = video.videoHeight;videoRenderCanvas.width = video.videoWidth;videoRenderCanvas.height = video.videoHeight;let webcamCanvasCtx = webcamCanvas.getContext('2d');webcamCanvasCtx.drawImage(video, 0, 0);});video.srcObject = stream;video.addEventListener('loadeddata', predictWebcam);}); }// We will create a tempory canvas to render to store frames from // the web cam stream for classification. var videoRenderCanvas = document.createElement('canvas'); var videoRenderCanvasCtx = videoRenderCanvas.getContext('2d');// Lets create a canvas to render our findings to the DOM. var webcamCanvas = document.createElement('canvas'); webcamCanvas.setAttribute('class', 'overlay'); liveView.appendChild(webcamCanvas);// If webcam supported, add event listener to button for when user // wants to activate it. if (hasGetUserMedia()) {const enableWebcamButton = document.getElementById('webcamButton');enableWebcamButton.addEventListener('click', enableCam); } else {console.warn('getUserMedia() is not supported by your browser'); }

style.js

/*** @license* Copyright 2018 Google LLC. All Rights Reserved.* Licensed under the Apache License, Version 2.0 (the "License");* you may not use this file except in compliance with the License.* You may obtain a copy of the License at** http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.* =============================================================================*//******************************************************* Stylesheet by Jason Mayes 2020.** Get latest code on my Github:* https://github.com/jasonmayes/Real-Time-Person-Removal* Got questions? Reach out to me on social:* Twitter: @jason_mayes* LinkedIn: https://www.linkedin.com/in/creativetech*****************************************************/body {font-family: helvetica, arial, sans-serif;margin: 2em;color: #3D3D3D; }h1 {font-style: italic;color: #FF6F00; }h2 {clear: both; }em {font-weight: bold; }video {clear: both;display: block; }section {opacity: 1;transition: opacity 500ms ease-in-out; }header, footer {clear: both; }button {z-index: 1000;position: relative; }.removed {display: none; }.invisible {opacity: 0.2; }.note {font-style: italic;font-size: 130%; }.webcam {position: relative; }.webcam, .classifyOnClick {position: relative;float: left;width: 48%;margin: 2% 1%;cursor: pointer; }.webcam p, .classifyOnClick p {position: absolute;padding: 5px;background-color: rgba(255, 111, 0, 0.85);color: #FFF;border: 1px dashed rgba(255, 255, 255, 0.7);z-index: 2;font-size: 12px; }.highlighter {background: rgba(0, 255, 0, 0.25);border: 1px dashed #fff;z-index: 1;position: absolute; }.classifyOnClick {z-index: 0;position: relative; }.classifyOnClick canvas, .webcam canvas.overlay {opacity: 1;top: 0;left: 0;z-index: 2; }#liveView {transform-origin: top left;transform: scale(1); }

總結(jié)

以上是生活随笔為你收集整理的200行代码实现视频人物实时去除的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。